Do you want to publish a course? Click here

Semiclassical dynamics and coherent soliton condensates in self-focusing nonlinear media with periodic initial conditions

228   0   0.0 ( 0 )
 Added by Gino Biondini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The small dispersion limit of the focusing nonlinear Schrodinger equation with periodic initial conditions is studied analytically and numerically. First, through a comprehensive set of numerical simulations, it is demonstrated that solutions arising from a certain class of initial conditions, referred to as periodic single-lobe potentials, share the same qualitative features, which also coincide with those of solutions arising from localized initial conditions. The spectrum of the associated scattering problem in each of these cases is then numerically computed, and it is shown that such spectrum is confined to the real and imaginary axes of the spectral variable in the semiclassical limit. This implies that all nonlinear excitations emerging from the input have zero velocity, and form a coherent nonlinear condensate. Finally, by employing a formal Wentzel-Kramers-Brillouin expansion for the scattering eigenfunctions, asymptotic expressions for the number and location of the bands and gaps in the spectrum are obtained, as well as corresponding expressions for the relative band widths and the number of effective solitons. These results are shown to be in excellent agreement with those from direct numerical computation of the eigenfunctions. In particular, a scaling law is obtained showing that the number of effective solitons is inversely proportional to the small dispersion parameter.



rate research

Read More

The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we characterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on their background. Magnification of the rogue waves is studied numerically.
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analysing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in full analytical way, the number and the features (amplitude and velocity) of soliton-like excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits to predict and analyse the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a dark dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a $tanh$ function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope, at the same time the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as: retention of the pulse shape during the transmission of impulses in a long nonlinear cavity; giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.
We propose new type of discrete and ultradiscrete soliton equations, which admit extended soliton solution called periodic phase soliton solution. The discrete equation is derived from the discrete DKP equation and the ultradiscrete one is obtained by applying the ultradiscrete limit. The soliton solutions have internal freedom and change their shape periodically during propagation. In particular, the ultradiscrete solution reduces into the solution to the ultradiscrete hungry Lotka-Volterra equation in a special case.
123 - Jinho Baik , Zhipeng Liu 2019
We consider the one-dimensional totally asymmetric simple exclusion process with an arbitrary initial condition in a spatially periodic domain, and obtain explicit formulas for the multi-point distributions in the space-time plane. The formulas are given in terms of an integral involving a Fredholm determinant. We then evaluate the large-time, large-period limit in the relaxation time scale, which is the scale such that the system size starts to affect the height fluctuations. The limit is obtained assuming certain conditions on the initial condition, which we show that the step, flat, and step-flat initial conditions satisfy. Hence, we obtain the limit theorem for these three initial conditions in the periodic model, extending the previous work on the step initial condition. We also consider uniform random and uniform-step random initial conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا