Do you want to publish a course? Click here

Periodic TASEP with general initial conditions

124   0   0.0 ( 0 )
 Added by Zhipeng Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the one-dimensional totally asymmetric simple exclusion process with an arbitrary initial condition in a spatially periodic domain, and obtain explicit formulas for the multi-point distributions in the space-time plane. The formulas are given in terms of an integral involving a Fredholm determinant. We then evaluate the large-time, large-period limit in the relaxation time scale, which is the scale such that the system size starts to affect the height fluctuations. The limit is obtained assuming certain conditions on the initial condition, which we show that the step, flat, and step-flat initial conditions satisfy. Hence, we obtain the limit theorem for these three initial conditions in the periodic model, extending the previous work on the step initial condition. We also consider uniform random and uniform-step random initial conditions.



rate research

Read More

We consider the totally asymmetric simple exclusion process (TASEP) with non-random initial condition having density $rho$ on $mathbb{Z}_-$ and $lambda$ on $mathbb{Z}_+$, and a second class particle initially at the origin. For $rho<lambda$, there is a shock and the second class particle moves with speed $1-lambda-rho$. For large time $t$, we show that the position of the second class particle fluctuates on a $t^{1/3}$ scale and determine its limiting law. We also obtain the limiting distribution of the number of steps made by the second class particle until time $t$.
In the multi-type totally asymmetric simple exclusion process (TASEP) on the line, each site of Z is occupied by a particle labeled with some number, and two neighboring particles are interchanged at rate one if their labels are in increasing order. Consider the process with the initial configuration where each particle is labeled by its position. It is known that in this case a.s. each particle has an asymptotic speed which is distributed uniformly on [-1,1]. We study the joint distribution of these speeds: the TASEP speed process. We prove that the TASEP speed process is stationary with respect to the multi-type TASEP dynamics. Consequently, every ergodic stationary measure is given as a projection of the speed process measure. This generalizes previous descriptions restricted to finitely many classes. By combining this result with known stationary measures for TASEPs with finitely many types, we compute several marginals of the speed process, including the joint density of two and three consecutive speeds. One striking property of the distribution is that two speeds are equal with positive probability and for any given particle there are infinitely many others with the same speed. We also study the partially asymmetric simple exclusion process (ASEP). We prove that the states of the ASEP with the above initial configuration, seen as permutations of Z, are symmetric in distribution. This allows us to extend some of our results, including the stationarity and description of all ergodic stationary measures, also to the ASEP.
81 - Zhipeng Liu 2019
Recently Johansson and Rahman obtained the limiting multi-time distribution for the discrete polynuclear growth model, which is equivalent to discrete TASEP model with step initial condition. In this paper, we obtain a finite time multi-point distribution formula of continuous TASEP with general initial conditions in the space-time plane. We evaluate the limit of this distribution function when the times go to infinity proportionally for both step and flat initial conditions. These limiting distributions are expected to be universal for all the models in the Kardar-Parisi-Zhang universality class.
We study the totally asymmetric simple exclusion process (TASEP) on trees where particles are generated at the root. Particles can only jump away from the root, and they jump from $x$ to $y$ at rate $r_{x,y}$ provided $y$ is empty. Starting from the all empty initial condition, we show that the distribution of the configuration at time $t$ converges to an equilibrium. We study the current and give conditions on the transition rates such that the current is of linear order or such that there is zero current, i.e. the particles block each other. A key step, which is of independent interest, is to bound the first generation at which the particle trajectories of the first $n$ particles decouple.
We provide a direct and elementary proof that the formula obtained in [MQR17] for the TASEP transition probabilities for general (one-sided) initial data solves the Kolmogorov backward equation. The same method yields the solution for the related PushASEP particle system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا