Do you want to publish a course? Click here

Caloric effects around phase transitions in magnetic materials described by ab initio theory: The electronic glue and fluctuating local moments

240   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe magneto-, baro- and elastocaloric effects (MCEs, BCEs and eCEs) in materials which possess both discontinuous (first-order) and continuous (second-order) magnetic phase transitions. Our ab initio theory of the interacting electrons of materials in terms of disordered local moments (DLMs) has produced explicit mechanisms for the drivers of these transitions and here we study associated caloric effects in three case studies where both types of transition are evident. Our earlier work had described FeRhs magnetic phase diagram and large MCE. Here we present calculations of its substantial BCE and eCE. We describe the MCE of dysprosium and find very good agreement with experimental values for isothermal entropy ($Delta S_{iso}$) and adiabatic temperature ($Delta T_{ad}$) changes over a large temperature span and different applied magnetic field values. We examine the conditions for optimal values of both $Delta S_{iso}$ and $Delta T_{ad}$ that comply with a Clausius-Clapeyron analysis, which we use to propose a promising elastocaloric cooling cycle arising from the unusual dependence of the entropy on temperature and biaxial strain found in our third case study - the Mn$_3$GaN antiperovskite. We explain how both $Delta S_{iso}$ and $Delta T_{ad}$ can be kept large by exploiting the complex tensile strain-temperature magnetic phase diagram which we had earlier predicted for this material and also propose that hysteresis effects will be absent from half the caloric cycle. This rich and complex behavior stems from the frustrated nature of the interactions among the Mn local moments.



rate research

Read More

The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, the comparison between theory and experiments for LSMO strained on the most commonly used substrates, shows an overall good agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium out-of-plane lattice constants points to possible defects in real samples. The inclusion of a Hubbard-like contribution on the Mn d states, according to the so-called LSDA+U approach, is rather ineffective from the structural point of view, but much more important from the electronic and magnetic point of view. In particular, full half-metallicity, which is missed within a bare density-functional approach, is recovered within LSDA+U, in agreement with experiments. Moreover, the half-metallic behavior, particularly relevant for spin-injection purposes, is independent on the chosen substrate and is achieved for all the considered in-plane lattice constants. More generally, strain effects are not seen to crucially affect the electronic structure: within the considered tetragonalization range, the minority gap is only slightly (i.e. by about 0.1-0.2 eV) affected by a tensile or compressive strain. Nevertheless, we show that the growth on a smaller in-plane lattice constant can stabilize the out-of-plane vs in-plane e_g orbital and significatively change their relative occupancy. Since e_g orbitals are key quantities for the double-exchange mechanism, strain effects are confirmed to be crucial for the resulting magnetic coupling.
We model changes of magnetic ordering in Mn-antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a non-collinear spin-polarised density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn$_3$AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn$_3$GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilised by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first order transition) and a large adiabatic temperature change (due to the second order transition).
We combine spin polarised density functional theory and thermodynamic mean field theory to describe the phase transitions of antiperovskite manganese nitrides. We find that the inclusion of the localized spin contribution to the entropy, evaluated through mean field theory, lowers the transition temperatures. Furthermore, we show that the electronic entropy leads to first order phase transitions in agreement with experiments whereas the localized spin contribution adds second order character to the transition. We compare our predictions to available experimental data to assess the validity of the assumptions underpinning our multilevel modelling.
We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.
On the basis of a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy, K, with magnetisation, M, in metallic ferromagnets. We apply the theory to the high magnetic anisotropy material, L1_0-ordered FePt, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pt layering for all M and to be proportional to M^2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our results are in good agreement with recent experimental measurements on this important magnetic material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا