Do you want to publish a course? Click here

Ab-initio based analytical evaluation of entropy in magnetocaloric materials with first order phase transitions

81   0   0.0 ( 0 )
 Added by Marco Piazzi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine spin polarised density functional theory and thermodynamic mean field theory to describe the phase transitions of antiperovskite manganese nitrides. We find that the inclusion of the localized spin contribution to the entropy, evaluated through mean field theory, lowers the transition temperatures. Furthermore, we show that the electronic entropy leads to first order phase transitions in agreement with experiments whereas the localized spin contribution adds second order character to the transition. We compare our predictions to available experimental data to assess the validity of the assumptions underpinning our multilevel modelling.



rate research

Read More

112 - Kun Xu , Zhe Li , Yuan-Lei Zhang 2015
Taking into account the phase fraction during transition for the first-order magnetocaloric materials, an improved isothermal entropy change determination has been put forward based on the Clausius-Clapeyron (CC) equation. It was found that the isothermal entropy change value evaluated by our method is in excellent agreement with those determined from the Maxwell-relation (MR) for Ni-Mn-Sn Heusler alloys, which usually presents a weak field-induced phase transforming behavior. In comparison with MR, this method could give rise to a favorable result derived from few thermomagnetic measurements. More importantly, we can eliminate the isothermal entropy change overestimation derived from MR, which always exists in the cases of Ni-Co-Mn-In and MnAs systems with a prominent field-induced transition. These results confirmed that such a CC-equation-based method is quite practical and superior to the MR-based ones in eliminating the spurious spike and reducing measuring cost.
We describe magneto-, baro- and elastocaloric effects (MCEs, BCEs and eCEs) in materials which possess both discontinuous (first-order) and continuous (second-order) magnetic phase transitions. Our ab initio theory of the interacting electrons of materials in terms of disordered local moments (DLMs) has produced explicit mechanisms for the drivers of these transitions and here we study associated caloric effects in three case studies where both types of transition are evident. Our earlier work had described FeRhs magnetic phase diagram and large MCE. Here we present calculations of its substantial BCE and eCE. We describe the MCE of dysprosium and find very good agreement with experimental values for isothermal entropy ($Delta S_{iso}$) and adiabatic temperature ($Delta T_{ad}$) changes over a large temperature span and different applied magnetic field values. We examine the conditions for optimal values of both $Delta S_{iso}$ and $Delta T_{ad}$ that comply with a Clausius-Clapeyron analysis, which we use to propose a promising elastocaloric cooling cycle arising from the unusual dependence of the entropy on temperature and biaxial strain found in our third case study - the Mn$_3$GaN antiperovskite. We explain how both $Delta S_{iso}$ and $Delta T_{ad}$ can be kept large by exploiting the complex tensile strain-temperature magnetic phase diagram which we had earlier predicted for this material and also propose that hysteresis effects will be absent from half the caloric cycle. This rich and complex behavior stems from the frustrated nature of the interactions among the Mn local moments.
The anomalous plasmon linewidth dispersion (PLD) measured in K by vom Felde, Sprosser-Prou, and Fink (Phys. Rev. B 40, 10181 (1989)), has been attributed to strong dynamical electron-electron correlations. On the basis of ab initio response calculations, and detailed comparison with experiment, we show that the PLD of K is, in fact, dominated by decay into particle-hole excitations involving empty states of d-symmetry. For Li, we shed new light on the physics of the PLD. Our all-electron results illustrate the importance of ab initio methods for the study of electronic excitations.
We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.
Neutron diffraction measurements, performed in presence of an external magnetic field, have been used to show structural evidence for the kinetic arrest of the first-order phase transition from (i) the high temperature austenite phase to the low temperature martensite phase in the magnetic shape memory alloy Ni37Co11Mn42.5Sn9.5, (ii) the higher temperature ferromagnetic phase to the lower temperature antiferromagnetic phase in the half-doped charge ordered compound La0.5Ca0.5MnO3 and (iii) the formation of a glass-like arrested state (GLAS). The CHUF (cooling and heating under unequal fields) protocol has been used to establish phase coexistence of metastable and equilibrium states of GLAS and also to demonstrate the devitrification of the arrested metastable states in the neutron diffraction patterns. We also explore the field-temperature (H,T) phase diagram for the two compounds, which depicts the kinetic arrest line TK(H). TK is seen to increase as H increases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا