No Arabic abstract
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on $^3$He. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like $^4$He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our $^3$He densities can be used to evaluate any $^3$He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga.
We use the next-to-leading-order (NLO) amplitude in an effective field theory (EFT) for ${}^3$He + ${}^4$He $rightarrow {}^7$Be + $gamma$ to perform the extrapolation of higher-energy data to solar energies. At this order the EFT describes the capture process using an s-wave scattering length and effective range, the asymptotic behavior of $^7$Be and its excited state, and short-distance contributions to the E1 capture amplitude. We use a Bayesian analysis to infer the multi-dimensional posterior of these parameters from capture data below 2 MeV. The total $S$-factor $S(0)= 0.578^{+0.015}_{-0.016}$ keV b at 68% degree of belief. We also find significant constraints on $^3$He-$^4$He scattering parameters.
We propose a practical folding model to describe $^{3}$He elastic scattering. In the model, $^{3}$He optical potentials are constructed by making the folding procedure twice. First the nucleon-target potential is evaluated by folding the Melbourne $g$-matrix with the target density and localizing the nonlocal folding potential with the Brieva--Rook method, and second the resulting local nucleon-target potential is folded with the $^{3}$He density. This double single-folding model well describes $^{3}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide incident-energy range from 30 MeV/nucleon to 150 MeV/nucleon with no adjustable parameter. Spin-orbit force effects on differential cross sections are found to be appreciable only at higher incident energies such as 150 MeV/nucleon. Three-nucleon breakup effects of $^{3}$He are investigated with the continuum discretized coupled-channels method and are found to be appreciable only at lower incident energies around 40 MeV/nucleon. Effects of knock-on exchange processes are also analyzed.
Four light-mass nuclei are considered by an effective two-body clusterisation method; $^6$Li as $^2$H$+^4$He, $^7$Li as $^3$H$+^4$He, $^7$Be as $^3$He$+^4$He, and $^8$Be as $^4$He$+^4$He. The low-energy spectrum of each is determined from single-channel Lippmann-Schwinger equations, as are low-energy elastic scattering cross sections for the $^2$H$+^4$He system. These are presented at many angles and energies for which there are data. While some of these systems may be more fully described by many-body theories, this work establishes that a large amount of data may be explained by these two-body clusterisations.
We combine Newtons variational method with ideas from eigenvector continuation to construct a fast & accurate emulator for two-body scattering observables. The emulator will facilitate the application of rigorous statistical methods for interactions that depend smoothly on a set of free parameters. Our approach begins with a trial $K$ or $T$ matrix constructed from a small number of exact solutions to the Lippmann--Schwinger equation. Subsequent emulation only requires operations on small matrices. We provide several applications to short-range potentials with and without the Coulomb interaction and partial-wave coupling. It is shown that the emulator can accurately extrapolate far from the support of the training data. When used to emulate the neutron-proton cross section with a modern chiral interaction as a function of 26 free parameters, it reproduces the exact calculation with negligible error and provides an over 300x improvement in CPU time.
The meson-baryon molecular components for the $N^{ast}$ and $Delta ^{ast}$ resonances are investigated in terms of the compositeness, which is defined as the norm of the two-body wave function from the meson-baryon scattering amplitudes. The scattering amplitudes are constructed in a $pi N$-$eta N$-$sigma N$-$rho N$-$pi Delta$ coupled-channels problem in a meson exchange model together with several bare $N^{ast}$ and $Delta ^{ast}$ states, and parameters are fitted so as to reproduce the on-shell $pi N$ partial wave amplitudes up to the center-of-mass energy 1.9 GeV with the orbital angular momentum $L le 2$. As a result, the Roper resonance $N (1440)$ is found to be dominated by the $pi N$ and $sigma N$ molecular components while the bare-state contribution is small. The squared wave functions in coordinate space imply that both in the $pi N$ and $sigma N$ channels the separation between the meson and baryon is about more than 1 fm for the $N (1440)$ resonance. On the other hand, dominant meson-baryon molecular components are not observed in any other $N^{ast}$ and $Delta ^{ast}$ resonances in the present model, although they have some fractions of the meson-baryon clouds.