Do you want to publish a course? Click here

A microscopic approach to $^{3}$He scattering

150   0   0.0 ( 0 )
 Added by Masakazu Toyokawa
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We propose a practical folding model to describe $^{3}$He elastic scattering. In the model, $^{3}$He optical potentials are constructed by making the folding procedure twice. First the nucleon-target potential is evaluated by folding the Melbourne $g$-matrix with the target density and localizing the nonlocal folding potential with the Brieva--Rook method, and second the resulting local nucleon-target potential is folded with the $^{3}$He density. This double single-folding model well describes $^{3}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide incident-energy range from 30 MeV/nucleon to 150 MeV/nucleon with no adjustable parameter. Spin-orbit force effects on differential cross sections are found to be appreciable only at higher incident energies such as 150 MeV/nucleon. Three-nucleon breakup effects of $^{3}$He are investigated with the continuum discretized coupled-channels method and are found to be appreciable only at lower incident energies around 40 MeV/nucleon. Effects of knock-on exchange processes are also analyzed.



rate research

Read More

We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target density is taken as the local density in the Melbourne $g$-matrix. For $^{4}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide range of incident energies from 20~MeV/nucleon to 200~MeV/nucleon, the DF model with the target-density approximation (TDA) yields much better agreement with the experimental data than the usual DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as the local density. We also discuss the relation between the DF model with the TDA and the conventional folding model in which the nucleon-nucleus potential is folded with the $^{4}$He density.
The analysis of semi-inclusive deep inelastic electron scattering off polarized $^3$He at finite momentum transfers, aimed at the extraction of the quark transverse-momentum distributions in the neutron, requires the use of a distorted spin-dependent spectral function for $^3$He, which takes care of the final state interaction effects. This quantity is introduced in the non-relativistic case, and its generalization in a Poincare covariant framework, in plane wave impulse approximation for the moment being, is outlined. Studying the light-front spin-dependent spectral function for a J=1/2 system, such as the nucleon, it is found that, within the light-front dynamics with a fixed number of constituents and in the valence approximation, only three of the six leading twist T-even transverse-momentum distributions are independent.
137 - A. Deltuva , A. C. Fonseca 2014
Microscopic calculations of four-body collisions become very challenging in the energy regime above the threshold for four free particles. The neutron-${}^3$He scattering is an example of such process with elastic, rearrangement, and breakup channels. We aim to calculate observables for elastic and inelastic neutron-${}^3$He reactions up to 30 MeV neutron energy using realistic nuclear force models. We solve the Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators in the momentum-space framework. The complex-energy method with special integration weights is applied to deal with the complicated singularities in the kernel of AGS equations. We obtain fully converged results for the differential cross section and neutron analyzing power in the neutron-${}^3$He elastic scattering as well as the total cross sections for inelastic reactions. Several realistic potentials are used, including the one with an explicit $Delta$ isobar excitation. There is reasonable agreement between the theoretical predictions and experimental data for the neutron-${}^3$He scattering in the considered energy regime. The most remarkable disagreements are seen around the minimum of the differential cross section and the extrema of the neutron analyzing power. The breakup cross section increases with energy exceeding rearrangement channels above 23 MeV.
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on $^3$He. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like $^4$He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our $^3$He densities can be used to evaluate any $^3$He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga.
Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction $^6$He(p,p)$^6$He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the reaction is based on a microscopic Watson first-order folding potential, which explicitly takes into account that the two neutrons outside the $^4$He-core occupy an open p-shell. The folding of the single-particle harmonic oscillator density matrix with the nucleon-nucleon t-matrix leads for this case to new terms not present in traditional folding optical potentials for closed shell nuclei. The effect of those new terms on the elastic scattering observables is investigated. Furthermore, the influence of an exponential tail of the p-shell wave functions on the scattering observables is studied, as well as the sensitivity of the observables to variations of matter and charge radius. Finally elastic scattering observables for the reaction $^8$He(p,p)$^8$He are presented at selected projectile energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا