No Arabic abstract
The local interaction of charges and light in organic solids is the basis of distinct and fundamental effects. We here observe, at the single molecule scale, how a focused laser beam can locally shift by hundreds-time their natural linewidth and in a persistent way the transition frequency of organic chromophores, cooled at liquid helium temperatures in different host matrices. Supported by quantum chemistry calculations, the results are interpreted as effects of a photo-ionization cascade, leading to a stable electric field, which Stark-shifts the molecular electronic levels. The experimental method is then applied to a common challenge in quantum photonics, i.e. the independent tuning and synchronization of close-by quantum emitters, which is desirable for multi-photon experiments. Five molecules that are spatially separated by about 50 microns and originally 20 GHz apart are brought into resonance within twice their linewidth. Combining this ability with an emission linewidth that is only limited by the spontaneous decay, the system enables fabrication-free, independent tuning of multiple molecules integrated on the same photonic chip.
Full phase control of THz emitting quantum cascade laser (QCL) combs has recently been demonstrated, opening new perspectives for even the most demanding applications. In this framework, simplifying the set-ups for control of these devices will help to accelerate their spreading in many fields. We report a new way to control the emission frequencies of a THz QCL comb by small optical frequency tuning (SOFT), using a very simple experimental setup, exploiting the incoherent emission of an ordinary white light emitting diode. The slightly perturbative regime accessible in these condition allows tweaking the complex refractive index of the semiconductor without destabilizing the broadband laser gain. The SOFT actuator is characterized and compared to another actuator, the QCL driving current. The suitability of this additional degree of freedom for frequency and phase stabilization of a THz QCL comb is shown and perspectives are discussed.
Frequency translation of single photons while preserving their quantum characteristics is an important technology for flexible networking of photonic quantum communication systems. Here we demonstrate a flexible scheme to interface different-color photons using an optical single sideband (OSSB) modulator. By changing the radio-frequency signal that drives the modulators, we can easily shift and precisely tune the frequency of single photons. Using the OSSB modulator, we successfully erased the frequency distinguishability of non-degenerated photon pairs to obtain the Hong-Ou-Mandel interference with a visibility exceeding 90%. We also demonstrated that the level of distinguishability can be precisely controlled by the OSSB modulator. We expect that the OSSB modulator will provide a simple and flexible photonic interface for realizing advanced quantum information systems.
We report the detection of individual emitters in silicon belonging to seven different families of optically-active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the [1.1,1.55]-$mu$m range, spanning the O- and C-telecom bands. We analyse their photoluminescence spectrum, dipolar emission and optical relaxation dynamics at 10K. For a specific family, we show a constant emission intensity at saturation from 10K to temperatures well above the 77K-liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these novel artificial atoms are promising candidates for Si-based quantum technologies.
We present an experiment where a single molecule strongly affects the amplitude and phase of a laser field emerging from a subwavelength aperture. We achieve a visibility of -6% in direct and +10% in cross-polarized detection schemes. Our analysis shows that a close to full extinction should be possible using near-field excitation.
By projecting onto complex optical mode profiles, it is possible to estimate arbitrarily small separations between objects with quantum-limited precision, free of uncertainty arising from overlapping intensity profiles. Here we extend these techniques to the time-frequency domain using mode-selective sum-frequency generation with shaped ultrafast pulses. We experimentally resolve temporal and spectral separations between incoherent mixtures of single-photon level signals ten times smaller than their optical bandwidths with a ten-fold improvement in precision over the intensity-only Cramer-Rao bound.