Do you want to publish a course? Click here

Broad diversity of near-infrared single-photon emitters in silicon

104   0   0.0 ( 0 )
 Added by Ana\\\"is Dr\\'eau
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of individual emitters in silicon belonging to seven different families of optically-active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the [1.1,1.55]-$mu$m range, spanning the O- and C-telecom bands. We analyse their photoluminescence spectrum, dipolar emission and optical relaxation dynamics at 10K. For a specific family, we show a constant emission intensity at saturation from 10K to temperatures well above the 77K-liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these novel artificial atoms are promising candidates for Si-based quantum technologies.



rate research

Read More

Single-photon emitters are essential for enabling several emerging applications in quantum information technology, quantum sensing and quantum communication. Scalable photonic platforms capable of hosting intrinsic or directly embedded sources of single-photon emission are of particular interest for the realization of integrated quantum photonic circuits. Here, we report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates. As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices. Photophysical analysis reveals bright (>$10^5$ counts/s), stable, linearly polarized, and pure quantum emitters in SiN films with the value of the second-order autocorrelation function at zero time delay $g^{(2)}(0)$ below 0.2 at room temperatures. The emission is suggested to originate from a specific defect center in silicon nitride due to the narrow wavelength distribution of the observed luminescence peak. Single-photon emitters in silicon nitride have the potential to enable direct, scalable and low-loss integration of quantum light sources with the well-established photonic on-chip platform.
In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implantation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line in the near infrared, the radiative lifetime is in the nanosecond range and the emission is perfectly linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the zero-phonon line. Although Fourier-transform limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the near infrared by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.
In the field of quantum photon sources, single photon emitter from solid is of fundamental importance for quantum computing, quantum communication, and quantum metrology. However, it has been an ultimate but seemingly distant goal to find the single photon sources that stable at room or high temperature, with high-brightness and broad ranges emission wavelength that successively cover ultraviolet to infrared in one host material. Here, we report an ultraviolet to near-infrared broad-spectrum single photon emitters (SPEs) based on a wide band-gap semiconductor material hexagonal boron nitride (hBN). The bright, high purity and stable SPEs with broad-spectrum are observed by using the resonant excitation technique. The single photon sources here can be operated at liquid helium, room temperature and even up to 1100 K. Depending on the excitation laser wavelengths, the SPEs can be dramatically observed from 357 nm to 896 nm. The single photon purity is higher than to 90 percentage and the narrowest linewidth of SPE is down to $sim$75 $mu$eV at low temperature, which reaches the resolution limit of our spectrometer. Our work not only paves a way to engineer a monolithic semiconductor tunable SPS, but also provides fundamental experimental evidence to understand the electronic and crystallographic structure of SPE defect states in hBN.
82 - T. Gaebel , I. Popa , A. Gruber 2004
Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (NE8) centre. The most striking feature of the defect is its emission bandwidth of 1.2 nm at room temperature. The emission wavelength of the defect is around 800 nm, which is suitable for telecom fibres. In addition, in this spectral region little background light from the diamond bulk material is detected. Consequently, a high contrast in antibunching measurements is achieved.
Optically active solid-state spin registers have demonstrated their unique potential in quantum computing, communication and sensing. Realizing scalability and increasing application complexity requires entangling multiple individual systems, e.g. via photon interference in an optical network. However, most solid-state emitters show relatively broad spectral distributions, which hinders optical interference experiments. Here, we demonstrate that silicon vacancy centres in semiconductor silicon carbide (SiC) provide a remarkably small natural distribution of their optical absorption/emission lines despite an elevated defect concentration of $approx 0.43,rm mu m^{-3}$. In particular, without any external tuning mechanism, we show that only 13 defects have to be investigated until at least two optical lines overlap within the lifetime-limited linewidth. Moreover, we identify emitters with overlapping emission profiles within diffraction limited excitation spots, for which we introduce simplified schemes for generation of computationally-relevant Greenberger-Horne-Zeilinger (GHZ) and cluster states. Our results underline the potential of the CMOS-compatible SiC platform toward realizing networked quantum technology applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا