Do you want to publish a course? Click here

Device-independent certification of multipartite entanglement using measurements performed in randomly chosen triads

70   0   0.0 ( 0 )
 Added by Gelo Noel Tabia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the problem of demonstrating non-Bell-local correlations by performing local measurements in randomly chosen triads, i.e., three mutually unbiased bases, on a multipartite Greenberger-Horne-Zeilinger state. Our main interest lies on investigating the feasibility of using these correlations to certify multipartite entanglement in a device-independent setting. In contrast to previous works, our numerical results up to the eight-partite scenario suggest that if each triad is randomly but uniformly chosen according to the Haar measure, one always (except possibly for a set of measure zero) finds Bell-inequality-violating correlations. In fact, a substantial fraction of these is even sufficient to reveal, in a device-independent manner, various higher-order entanglement. In particular, for the specific cases of three parties and four parties, our results---obtained from semidefinite programming---suggest that these randomly generated correlations always reveal, even in the presence of a non-negligible amount of white noise, the genuine multipartite entanglement possessed by these states. In other words, provided local calibration can be carried out to good precision, a device-independent certification of the genuine multipartite entanglement contained in these states can, in principle, also be carried out in an experimental situation without sharing a global reference frame.



rate research

Read More

Techniques developed for device-independent characterizations allow one to certify certain physical properties of quantum systems without assuming any knowledge of their internal workings. Such a certification, however, often relies on the employment of device-independent witnesses catered for the particular property of interest. In this work, we consider a one-parameter family of multipartite, two-setting, two-outcome Bell inequalities and demonstrate the extent to which they are suited for the device-independent certification of genuine many-body entanglement (and hence the entanglement depth) present in certain well-known multipartite quantum states, including the generalized Greenberger-Horne-Zeilinger (GHZ) states with unbalanced weights, the higher-dimensional generalizations of balanced GHZ states, and the $W$ states. As a by-product of our investigations, we have found that, in contrast with well-established results, provided trivial qubit measurements are allowed, full-correlation Bell inequalities can also be used to demonstrate the nonlocality of weakly entangled unbalanced-weight GHZ states. Besides, we also demonstrate how two-setting, two-outcome Bell inequalities can be constructed, based on the so-called GHZ paradox, to witness the entanglement depth of various graph states, including the ring graph states, the fully connected graph states, and some linear graph states, etc.
Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential resource for quantum information processing. Standard methods to detect genuine multipartite entanglement, e.g., entanglement witnesses, state tomography, or quantum state verification, require full knowledge of the Hilbert space dimension and precise calibration of measurement devices, which are usually difficult to acquire in an experiment. The most radical way to overcome these problems is to detect entanglement solely based on the Bell-like correlations of measurement outcomes collected in the experiment, namely, device-independently (DI). However, it is difficult to certify genuine entanglement of practical multipartite states in this way, and even more difficult to quantify it, due to the difficulty to identify optimal multipartite Bell inequalities and protocols tolerant to state impurity. In this work, we explore a general and robust DI method which can be applied to various realistic multipartite quantum state in arbitrary finite dimension, while merely relying on bipartite Bell inequalities. Our method allows us both to certify the presence of genuine multipartite entanglement and to quantify it. Several important classes of entangled states are tested with this method, leading to the detection of genuinely entangled states. We also certify genuine multipartite entanglement in weakly-entangled GHZ states, thus showing that the method applies equally well to less standard states.
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is satisfied by all correlations produced by measurements on biseparable quantum states, but which can be violated by n-partite entangled states, such as GHZ states. In contrast to traditional entanglement witnesses, the violation of this inequality implies that the state is not biseparable independently of the Hilbert space dimension and of the measured operators. Violation of this inequality does not imply, however, genuine multipartite non-locality. We show more generically how the problem of identifying genuine tripartite entanglement in a device-independent way can be addressed through semidefinite programming.
Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here we present a similar procedure for witnessing entangled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify an entangled measurement using measurement statistics only. We also apply our techniques to certify unentangled but nevertheless inherently quantum measurements.
We show that genuine multipartite entanglement of all multipartite pure states in arbitrary finite dimension can be detected in a device-independent way by employing bipartite Bell inequalities on states that are deterministically generated from the initial state via local operations. This leads to an efficient scheme for large classes of multipartite states that are relevant in quantum computation or condensed-matter physics, including cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model. For cluster states the detection of genuine multipartite entanglement involves only measurements on a constant number of systems with an overhead that scales linear with the system size, while for the AKLT model the overhead is polynomial. In all cases our approach shows robustness against experimental imperfections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا