No Arabic abstract
Techniques developed for device-independent characterizations allow one to certify certain physical properties of quantum systems without assuming any knowledge of their internal workings. Such a certification, however, often relies on the employment of device-independent witnesses catered for the particular property of interest. In this work, we consider a one-parameter family of multipartite, two-setting, two-outcome Bell inequalities and demonstrate the extent to which they are suited for the device-independent certification of genuine many-body entanglement (and hence the entanglement depth) present in certain well-known multipartite quantum states, including the generalized Greenberger-Horne-Zeilinger (GHZ) states with unbalanced weights, the higher-dimensional generalizations of balanced GHZ states, and the $W$ states. As a by-product of our investigations, we have found that, in contrast with well-established results, provided trivial qubit measurements are allowed, full-correlation Bell inequalities can also be used to demonstrate the nonlocality of weakly entangled unbalanced-weight GHZ states. Besides, we also demonstrate how two-setting, two-outcome Bell inequalities can be constructed, based on the so-called GHZ paradox, to witness the entanglement depth of various graph states, including the ring graph states, the fully connected graph states, and some linear graph states, etc.
We present a simple family of Bell inequalities applicable to a scenario involving arbitrarily many parties, each of which performs two binary-outcome measurements. We show that these inequalities are members of the complete set of full-correlation Bell inequalities discovered by Werner-Wolf-Zukowski-Brukner. For scenarios involving a small number of parties, we further verify that these inequalities are facet-defining for the convex set of Bell-local correlations. Moreover, we show that the amount of quantum violation of these inequalities naturally manifests the extent to which the underlying system is genuinely many-body entangled. In other words, our Bell inequalities, when supplemented with the appropriate quantum bounds, naturally serve as device-independent witnesses for entanglement depth, allowing one to certify genuine k-partite entanglement in an arbitrary $nge k$-partite scenario without relying on any assumption about the measurements being performed, nor the dimension of the underlying physical system. A brief comparison is made between our witnesses and those based on some other Bell inequalities, as well as the quantum Fisher information. A family of witnesses for genuine k-partite nonlocality applicable to an arbitrary $nge k$-partite scenario based on our Bell inequalities is also presented.
Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential resource for quantum information processing. Standard methods to detect genuine multipartite entanglement, e.g., entanglement witnesses, state tomography, or quantum state verification, require full knowledge of the Hilbert space dimension and precise calibration of measurement devices, which are usually difficult to acquire in an experiment. The most radical way to overcome these problems is to detect entanglement solely based on the Bell-like correlations of measurement outcomes collected in the experiment, namely, device-independently (DI). However, it is difficult to certify genuine entanglement of practical multipartite states in this way, and even more difficult to quantify it, due to the difficulty to identify optimal multipartite Bell inequalities and protocols tolerant to state impurity. In this work, we explore a general and robust DI method which can be applied to various realistic multipartite quantum state in arbitrary finite dimension, while merely relying on bipartite Bell inequalities. Our method allows us both to certify the presence of genuine multipartite entanglement and to quantify it. Several important classes of entangled states are tested with this method, leading to the detection of genuinely entangled states. We also certify genuine multipartite entanglement in weakly-entangled GHZ states, thus showing that the method applies equally well to less standard states.
We consider the problem of demonstrating non-Bell-local correlations by performing local measurements in randomly chosen triads, i.e., three mutually unbiased bases, on a multipartite Greenberger-Horne-Zeilinger state. Our main interest lies on investigating the feasibility of using these correlations to certify multipartite entanglement in a device-independent setting. In contrast to previous works, our numerical results up to the eight-partite scenario suggest that if each triad is randomly but uniformly chosen according to the Haar measure, one always (except possibly for a set of measure zero) finds Bell-inequality-violating correlations. In fact, a substantial fraction of these is even sufficient to reveal, in a device-independent manner, various higher-order entanglement. In particular, for the specific cases of three parties and four parties, our results---obtained from semidefinite programming---suggest that these randomly generated correlations always reveal, even in the presence of a non-negligible amount of white noise, the genuine multipartite entanglement possessed by these states. In other words, provided local calibration can be carried out to good precision, a device-independent certification of the genuine multipartite entanglement contained in these states can, in principle, also be carried out in an experimental situation without sharing a global reference frame.
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is satisfied by all correlations produced by measurements on biseparable quantum states, but which can be violated by n-partite entangled states, such as GHZ states. In contrast to traditional entanglement witnesses, the violation of this inequality implies that the state is not biseparable independently of the Hilbert space dimension and of the measured operators. Violation of this inequality does not imply, however, genuine multipartite non-locality. We show more generically how the problem of identifying genuine tripartite entanglement in a device-independent way can be addressed through semidefinite programming.
D{u}r [Phys. Rev. Lett. {bf 87}, 230402 (2001)] constructed $N$-qubit bound entangled states which violate a Bell inequality for $Nge 8$, and his result was recently improved by showing that there exists an $N$-qubit bound entangled state violating the Bell inequality if and only if $Nge 6$ [Phys. Rev. A {bf 79}, 032309 (2009)]. On the other hand, it has been also shown that the states which D{u}r considered violate Bell inequalities different from the inequality for $Nge 6$. In this paper, by employing different forms of Bell inequalities, in particular, a specific form of Bell inequalities with $M$ settings of the measuring apparatus for sufficiently large $M$, we prove that there exists an $N$-qubit bound entangled state violating the $M$-setting Bell inequality if and only if $Nge 4$.