Do you want to publish a course? Click here

Continuous Release of Data Streams under both Centralized and Local Differential Privacy

393   0   0.0 ( 0 )
 Added by Tianhao Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we study the problem of publishing a stream of real-valued data satisfying differential privacy (DP). One major challenge is that the maximal possible value can be quite large; thus it is necessary to estimate a threshold so that numbers above it are truncated to reduce the amount of noise that is required to all the data. The estimation must be done based on the data in a private fashion. We develop such a method that uses the Exponential Mechanism with a quality function that approximates well the utility goal while maintaining a low sensitivity. Given the threshold, we then propose a novel online hierarchical method and several post-processing techniques. Building on these ideas, we formalize the steps into a framework for private publishing of stream data. Our framework consists of three components: a threshold optimizer that privately estimates the threshold, a perturber that adds calibrated noises to the stream, and a smoother that improves the result using post-processing. Within our framework, we design an algorithm satisfying the more stringent setting of DP called local DP (LDP). To our knowledge, this is the first LDP algorithm for publishing streaming data. Using four real-world datasets, we demonstrate that our mechanism outperforms the state-of-the-art by a factor of 6-10 orders of magnitude in terms of utility (measured by the mean squared error of answering a random range query).



rate research

Read More

Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, and hence to pave the way towards personalized genomic medicine. In this paper, we introduce ($epsilon , T$)-dependent local differential privacy (LDP) for privacy-preserving sharing of correlated data and propose a genomic data sharing mechanism under this privacy definition. We first show that the original definition of LDP is not suitable for genomic data sharing, and then we propose a new mechanism to share genomic data. The proposed mechanism considers the correlations in data during data sharing, eliminates statistically unlikely data values beforehand, and adjusts the probability distributions for each shared data point accordingly. By doing so, we show that we can avoid an attacker from inferring the correct values of the shared data points by utilizing the correlations in the data. By adjusting the probability distributions of the shared states of each data point, we also improve the utility of shared data for the data collector. Furthermore, we develop a greedy algorithm that strategically identifies the processing order of the shared data points with the aim of maximizing the utility of the shared data. Considering the interdependent privacy risks while sharing genomic data, we also analyze the information gain of an attacker about genomes of a donors family members by observing perturbed data of the genome donor and we propose a mechanism to select the privacy budget (i.e., $epsilon$ parameter of LDP) of the donor by also considering privacy preferences of her family members. Our evaluation results on a real-life genomic dataset show the superiority of the proposed mechanism compared to the randomized response mechanism (a widely used technique to achieve LDP).
Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. To address this challenge, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution, and we rigorously prove that the MVG mechanism preserves $(epsilon,delta)$-differential privacy. Furthermore, we introduce the concept of directional noise made possible by the design of the MVG mechanism. Directional noise allows the impact of the noise on the utility of the matrix-valued query function to be moderated. Finally, we experimentally demonstrate the performance of our mechanism using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline.
Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data collection. Although existing LDP protocols offer high utility for large user populations (100,000 or more users), they perform poorly in scenarios with small user populations (such as those in the cybersecurity domain) and lack perturbation mechanisms that are effective for both ordinal and non-ordinal item sequences while protecting sequence length and content simultaneously. In this paper, we address the small user population problem by introducing the concept of Condensed Local Differential Privacy (CLDP) as a specialization of LDP, and develop a suite of CLDP protocols that offer desirable statistical utility while preserving privacy. Our protocols support different types of client data, ranging from ordinal data types in finite metric spaces (numeric malware infection statistics), to non-ordinal items (O
Membership inference attacks seek to infer the membership of individual training instances of a privately trained model. This paper presents a membership privacy analysis and evaluation system, called MPLens, with three unique contributions. First, through MPLens, we demonstrate how membership inference attack methods can be leveraged in adversarial machine learning. Second, through MPLens, we highlight how the vulnerability of pre-trained models under membership inference attack is not uniform across all classes, particularly when the training data itself is skewed. We show that risk from membership inference attacks is routinely increased when models use skewed training data. Finally, we investigate the effectiveness of differential privacy as a mitigation technique against membership inference attacks. We discuss the trade-offs of implementing such a mitigation strategy with respect to the model complexity, the learning task complexity, the dataset complexity and the privacy parameter settings. Our empirical results reveal that (1) minority groups within skewed datasets display increased risk for membership inference and (2) differential privacy presents many challenging trade-offs as a mitigation technique to membership inference risk.
We consider the binary classification problem in a setup that preserves the privacy of the original sample. We provide a privacy mechanism that is locally differentially private and then construct a classifier based on the private sample that is universally consistent in Euclidean spaces. Under stronger assumptions, we establish the minimax rates of convergence of the excess risk and see that they are slower than in the case when the original sample is available.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا