Do you want to publish a course? Click here

Secure and Utility-Aware Data Collection with Condensed Local Differential Privacy

327   0   0.0 ( 0 )
 Added by M. Emre Gursoy
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data collection. Although existing LDP protocols offer high utility for large user populations (100,000 or more users), they perform poorly in scenarios with small user populations (such as those in the cybersecurity domain) and lack perturbation mechanisms that are effective for both ordinal and non-ordinal item sequences while protecting sequence length and content simultaneously. In this paper, we address the small user population problem by introducing the concept of Condensed Local Differential Privacy (CLDP) as a specialization of LDP, and develop a suite of CLDP protocols that offer desirable statistical utility while preserving privacy. Our protocols support different types of client data, ranging from ordinal data types in finite metric spaces (numeric malware infection statistics), to non-ordinal items (O



rate research

Read More

When collecting information, local differential privacy (LDP) alleviates privacy concerns of users because their private information is randomized before being sent it to the central aggregator. LDP imposes large amount of noise as each user executes the randomization independently. To address this issue, recent work introduced an intermediate server with the assumption that this intermediate server does not collude with the aggregator. Under this assumption, less noise can be added to achieve the same privacy guarantee as LDP, thus improving utility for the data collection task. This paper investigates this multiple-party setting of LDP. We analyze the system model and identify potential adversaries. We then make two improvements: a new algorithm that achieves a better privacy-utility tradeoff; and a novel protocol that provides better protection against various attacks. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method.
275 - Di Zhuang , J. Morris Chang 2020
In the big data era, more and more cloud-based data-driven applications are developed that leverage individual data to provide certain valuable services (the utilities). On the other hand, since the same set of individual data could be utilized to infer the individuals certain sensitive information, it creates new channels to snoop the individuals privacy. Hence it is of great importance to develop techniques that enable the data owners to release privatized data, that can still be utilized for certain premised intended purpose. Existing data releasing approaches, however, are either privacy-emphasized (no consideration on utility) or utility-driven (no guarantees on privacy). In this work, we propose a two-step perturbation-based utility-aware privacy-preserving data releasing framework. First, certain predefined privacy and utility problems are learned from the public domain data (background knowledge). Later, our approach leverages the learned knowledge to precisely perturb the data owners data into privatized data that can be successfully utilized for certain intended purpose (learning to succeed), without jeopardizing certain predefined privacy (training to fail). Extensive experiments have been conducted on Human Activity Recognition, Census Income and Bank Marketing datasets to demonstrate the effectiveness and practicality of our framework.
A major impediment to research on improving peer review is the unavailability of peer-review data, since any release of such data must grapple with the sensitivity of the peer review data in terms of protecting identities of reviewers from authors. We posit the need to develop techniques to release peer-review data in a privacy-preserving manner. Identifying this problem, in this paper we propose a framework for privacy-preserving release of certain conference peer-review data -- distributions of ratings, miscalibration, and subjectivity -- with an emphasis on the accuracy (or utility) of the released data. The crux of the framework lies in recognizing that a part of the data pertaining to the reviews is already available in public, and we use this information to post-process the data released by any privacy mechanism in a manner that improves the accuracy (utility) of the data while retaining the privacy guarantees. Our framework works with any privacy-preserving mechanism that operates via releasing perturbed data. We present several positive and negative theoretical results, including a polynomial-time algorithm for improving on the privacy-utility tradeoff.
Extended differential privacy, a generalization of standard differential privacy (DP) using a general metric, has been widely studied to provide rigorous privacy guarantees while keeping high utility. However, existing works on extended DP are limited to few metrics, such as the Euclidean metric. Consequently, they have only a small number of applications, such as location-based services and document processing. In this paper, we propose a couple of mechanisms providing extended DP with a different metric: angular distance (or cosine distance). Our mechanisms are based on locality sensitive hashing (LSH), which can be applied to the angular distance and work well for personal data in a high-dimensional space. We theoretically analyze the privacy properties of our mechanisms, and prove extended DP for input data by taking into account that LSH preserves the original metric only approximately. We apply our mechanisms to friend matching based on high-dimensional personal data with angular distance in the local model, and evaluate our mechanisms using two real datasets. We show that LDP requires a very large privacy budget and that RAPPOR does not work in this application. Then we show that our mechanisms enable friend matching with high utility and rigorous privacy guarantees based on extended DP.
Differential privacy protects an individuals privacy by perturbing data on an aggregated level (DP) or individual level (LDP). We report four online human-subject experiments investigating the effects of using different approaches to communicate differential privacy techniques to laypersons in a health app data collection setting. Experiments 1 and 2 investigated participants data disclosure decisions for low-sensitive and high-sensitive personal information when given different DP or LDP descriptions. Experiments 3 and 4 uncovered reasons behind participants data sharing decisions, and examined participants subjective and objective comprehensions of these DP or LDP descriptions. When shown descriptions that explain the implications instead of the definition/processes of DP or LDP technique, participants demonstrated better comprehension and showed more willingness to share information with LDP than with DP, indicating their understanding of LDPs stronger privacy guarantee compared with DP.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا