Do you want to publish a course? Click here

MVG Mechanism: Differential Privacy under Matrix-Valued Query

138   0   0.0 ( 0 )
 Added by Thee Chanyaswad
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. To address this challenge, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution, and we rigorously prove that the MVG mechanism preserves $(epsilon,delta)$-differential privacy. Furthermore, we introduce the concept of directional noise made possible by the design of the MVG mechanism. Directional noise allows the impact of the noise on the utility of the matrix-valued query function to be moderated. Finally, we experimentally demonstrate the performance of our mechanism using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline.



rate research

Read More

Traditionally, differential privacy mechanism design has been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often sub-optimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. In this work, we consider the design of differential privacy mechanism specifically for a matrix-valued query function. The proposed solution is to utilize a matrix-variate noise, as opposed to the traditional scalar-valued noise. Particularly, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution. We prove that the MVG mechanism preserves $(epsilon,delta)$-differential privacy, and show that it allows the structural characteristics of the matrix-valued query function to naturally be exploited. Furthermore, due to the multi-dimensional nature of the MVG mechanism and the matrix-valued query, we introduce the concept of directional noise, which can be utilized to mitigate the impact the noise has on the utility of the query. Finally, we demonstrate the performance of the MVG mechanism and the advantages of directional noise using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline. Our work thus presents a promising prospect for both future research and implementation of differential privacy for matrix-valued query functions.
The wide deployment of machine learning in recent years gives rise to a great demand for large-scale and high-dimensional data, for which the privacy raises serious concern. Differential privacy (DP) mechanisms are conventionally developed for scalar values, not for structural data like matrices. Our work proposes Improved Matrix Gaussian Mechanism (IMGM) for matrix-valued DP, based on the necessary and sufficient condition of $ (varepsilon,delta) $-differential privacy. IMGM only imposes constraints on the singular values of the covariance matrices of the noise, which leaves room for design. Among the legitimate noise distributions for matrix-valued DP, we find the optimal one turns out to be i.i.d. Gaussian noise, and the DP constraint becomes a noise lower bound on each element. We further derive a tight composition method for IMGM. Apart from the theoretical analysis, experiments on a variety of models and datasets also verify that IMGM yields much higher utility than the state-of-the-art mechanisms at the same privacy guarantee.
185 - Hilal Asi , John C. Duchi 2020
We develop two notions of instance optimality in differential privacy, inspired by classical statistical theory: one by defining a local minimax risk and the other by considering unbiased mechanisms and analogizing the Cramer-Rao bound, and we show that the local modulus of continuity of the estimand of interest completely determines these quantities. We also develop a complementary collection mechanisms, which we term the inverse sensitivity mechanisms, which are instance optimal (or nearly instance optimal) for a large class of estimands. Moreover, these mechanisms uniformly outperform the smooth sensitivity framework on each instance for several function classes of interest, including real-valued continuous functions. We carefully present two instantiations of the mechanisms for median and robust regression estimation with corresponding experiments.
72 - Dashan Gao , Ben Tan , Ce Ju 2020
Matrix Factorization has been very successful in practical recommendation applications and e-commerce. Due to data shortage and stringent regulations, it can be hard to collect sufficient data to build performant recommender systems for a single company. Federated learning provides the possibility to bridge the data silos and build machine learning models without compromising privacy and security. Participants sharing common users or items collaboratively build a model over data from all the participants. There have been some works exploring the application of federated learning to recommender systems and the privacy issues in collaborative filtering systems. However, the privacy threats in federated matrix factorization are not studied. In this paper, we categorize federated matrix factorization into three types based on the partition of feature space and analyze privacy threats against each type of federated matrix factorization model. We also discuss privacy-preserving approaches. As far as we are aware, this is the first study of privacy threats of the matrix factorization method in the federated learning framework.
In this paper, we study the problem of publishing a stream of real-valued data satisfying differential privacy (DP). One major challenge is that the maximal possible value can be quite large; thus it is necessary to estimate a threshold so that numbers above it are truncated to reduce the amount of noise that is required to all the data. The estimation must be done based on the data in a private fashion. We develop such a method that uses the Exponential Mechanism with a quality function that approximates well the utility goal while maintaining a low sensitivity. Given the threshold, we then propose a novel online hierarchical method and several post-processing techniques. Building on these ideas, we formalize the steps into a framework for private publishing of stream data. Our framework consists of three components: a threshold optimizer that privately estimates the threshold, a perturber that adds calibrated noises to the stream, and a smoother that improves the result using post-processing. Within our framework, we design an algorithm satisfying the more stringent setting of DP called local DP (LDP). To our knowledge, this is the first LDP algorithm for publishing streaming data. Using four real-world datasets, we demonstrate that our mechanism outperforms the state-of-the-art by a factor of 6-10 orders of magnitude in terms of utility (measured by the mean squared error of answering a random range query).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا