Do you want to publish a course? Click here

CovidNet: To Bring Data Transparency in the Era of COVID-19

74   0   0.0 ( 0 )
 Added by Tong Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Timely, creditable, and fine-granular case information is vital for local communities and individual citizens to make rational and data-driven responses to the COVID-19 pandemic. This paper presents CovidNet, a COVID-19 tracking project associated with a large scale epidemic dataset, which was initiated by 1Point3Acres. To the best of our knowledge, the project is the only platform providing real-time global case information of more than 4,124 sub-divisions from over 27 countries worldwide with multi-language supports. The platform also offers interactive visualization tools to analyze the full historical case curves in each region. Initially launched as a voluntary project to bridge the data transparency gap in North America in January 2020, this project by far has become one of the major independent sources worldwide and has been consumed by many other tracking platforms. The accuracy and freshness of the dataset is a result of the painstaking efforts from our voluntary teamwork, crowd-sourcing channels, and automated data pipelines. As of May 18, 2020, the project website has been visited more than 200 million times and the CovidNet dataset has empowered over 522 institutions and organizations worldwide in policy-making and academic researches. All datasets are openly accessible for non-commercial purposes at https://coronavirus.1point3acres.com via a formal request through our APIs.



rate research

Read More

The UK government announced its first wave of lockdown easing on 10 May 2020, two months after the non-pharmaceutical measures to reduce the spread of COVID-19 were first introduced on 23 March 2020. Analysis of reported case rate data from Public Health England and aggregated and anonymised crowd level mobility data shows variability across local authorities in the UK. A locality-based approach to lockdown easing is needed, enabling local public health and associated health and social care services to rapidly respond to emerging hotspots of infection. National level data will hide an increasing heterogeneity of COVID-19 infections and mobility, and new ways of real-time data presentation to the public are required. Data sources (including mobile) allow for faster visualisation than more traditional data sources, and are part of a wider trend towards near real-time analysis of outbreaks needed for timely, targeted local public health interventions. Real time data visualisation may give early warnings of unusual levels of activity which warrant further investigation by local public health authorities.
We apply optimal control theory to a generalized SEIR-type model. The proposed system has three controls, representing social distancing, preventive means, and treatment measures to combat the spread of the COVID-19 pandemic. We analyze such optimal control problem with respect to real data transmission in Italy. Our results show the appropriateness of the model, in particular with respect to the number of quarantined/hospitalized (confirmed and infected) and recovered individuals. Considering the Pontryagin controls, we show how in a perfect world one could have drastically diminish the number of susceptible, exposed, infected, quarantined/hospitalized, and death individuals, by increasing the population of insusceptible/protected.
Mathematical models describing SARS-CoV-2 dynamics and the corresponding immune responses in patients with COVID-19 can be critical to evaluate possible clinical outcomes of antiviral treatments. In this work, based on the concept of virus spreadability in the host, antiviral effectiveness thresholds are determined to establish whether or not a treatment will be able to clear the infection. In addition, the virus dynamic in the host -- including the time-to-peak and the final monotonically decreasing behavior -- is chracterized as a function of the treatment initial time. Simulation results, based on nine real patient data, show the potential clinical benefits of a treatment classification according to patient critical parameters. This study is aimed at paving the way for the different antivirals being developed to tackle SARS-CoV-2.
183 - Francesca Bassi 2020
During the current Covid-19 pandemic in Italy, official data are collected with medical swabs following a pure convenience criterion which, at least in an early phase, has privileged the exam of patients showing evident symptoms. However, there are evidences of a very high proportion of asymptomatic patients (e. g. Aguilar et al., 2020; Chugthai et al, 2020; Li, et al., 2020; Mizumoto et al., 2020a, 2020b and Yelin et al., 2020). In this situation, in order to estimate the real number of infected (and to estimate the lethality rate), it should be necessary to run a properly designed sample survey through which it would be possible to calculate the probability of inclusion and hence draw sound probabilistic inference. Some researchers proposed estimates of the total prevalence based on various approaches, including epidemiologic models, time series and the analysis of data collected in countries that faced the epidemic in earlier time (Brogi et al., 2020). In this paper, we propose to estimate the prevalence of Covid-19 in Italy by reweighting the available official data published by the Istituto Superiore di Sanit`a so as to obtain a more representative sample of the Italian population. Reweighting is a procedure commonly used to artificially modify the sample composition so as to obtain a distribution which is more similar to the population (Valliant et al., 2018). In this paper, we will use post-stratification of the official data, in order to derive the weights necessary for reweighting them using age and gender as post-stratification variables thus obtaining more reliable estimation of prevalence and lethality.
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economic activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا