Do you want to publish a course? Click here

Dynamical Characterization of Antiviral Effects in COVID-19

64   0   0.0 ( 0 )
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Mathematical models describing SARS-CoV-2 dynamics and the corresponding immune responses in patients with COVID-19 can be critical to evaluate possible clinical outcomes of antiviral treatments. In this work, based on the concept of virus spreadability in the host, antiviral effectiveness thresholds are determined to establish whether or not a treatment will be able to clear the infection. In addition, the virus dynamic in the host -- including the time-to-peak and the final monotonically decreasing behavior -- is chracterized as a function of the treatment initial time. Simulation results, based on nine real patient data, show the potential clinical benefits of a treatment classification according to patient critical parameters. This study is aimed at paving the way for the different antivirals being developed to tackle SARS-CoV-2.



rate research

Read More

We propose a qualitative analysis of a recent fractional-order COVID-19 model. We start by showing that the model is mathematically and biologically well posed. Then, we give a proof on the global stability of the disease free equilibrium point. Finally, some numerical simulations are performed to ensure stability and convergence of the disease free equilibrium point.
Coronavirus disease 2019 (CoViD-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among many symptoms, cough, fever and tiredness are the most common. People over 60 years old and with associated comorbidities are most likely to develop a worsening health condition. This paper proposes a non-integer order model to describe the dynamics of CoViD-19 in a standard population. The model incorporates the reinfection rate in the individuals recovered from the disease. Numerical simulations are performed for different values of the order of the fractional derivative and of reinfection rate. The results are discussed from a biological point of view.
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the first wave of the COVID-19 virus in China and compare it to other global locations. We provide a comprehensive picture of the spatial propagation from Hubei to other provinces in China in terms of distance, population size, and human mobility and their scaling relations. Since strict quarantine has been usually applied between cities, more insight about the temporal evolution of the disease can be obtained by analyzing the epidemic within cities, especially the time evolution of the infection, death, and recovery rates which affected by policies. We study and compare the infection rate in different cities in China and provinces in Italy and find that the disease spread is characterized by a two-stages process. At early times, at order of few days, the infection rate is close to a constant probably due to the lack of means to detect infected individuals before infection symptoms are observed. Then at later times it decays approximately exponentially due to quarantines. The time evolution of the death and recovery rates also distinguish between these two stages and reflect the health system situation which could be overloaded.
The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing and travel reduction are recognized as essential non-pharmacologic approaches to control the spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new cases with one week of delay. Furthermore, significant segregation is found among different county groups which are categorized based on numbers of cases. The results suggest that within-group co-location probabilities remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties.
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has led to a wide range of non-pharmaceutical interventions being implemented around the world to curb transmission. However, the economic and social costs of some of these measures, especially lockdowns, has been high. An alternative and widely discussed public health strategy for the COVID-19 pandemic would have been to shield those most vulnerable to COVID-19, while allowing infection to spread among lower risk individuals with the aim of reaching herd immunity. Here we retrospectively explore the effectiveness of this strategy, showing that even under the unrealistic assumption of perfect shielding, hospitals would have been rapidly overwhelmed with many avoidable deaths among lower risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding would have likely led to a large increase (>150%) in the number of deaths compared to perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing infections to spread among the wider population would not have been a viable public health strategy for COVID-19, and is unlikely to be effective for future pandemics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا