Do you want to publish a course? Click here

Binary-induced spiral arms inside the disc cavity of AB Aurigae

179   0   0.0 ( 0 )
 Added by Pedro Poblete
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we demonstrate that the inner spiral structure observed in AB Aurigae can be created by a binary star orbiting inside the dust cavity. We find that a companion with a mass-ratio of 0.25, semi-major axis of 40 au, eccentricity of 0.5, and inclination of 90{deg} produces gaseous spirals closely matching the ones observed in $^{12}$CO (2-1) line emission. Based on dust dynamics in circumbinary discs (Poblete, Cuello, and Cuadra 2019), we constrain the inclination of the binary with respect to the circumbinary disc to range between 60{deg} and 90{deg}. We predict that the stellar companion is located roughly 0.18 arcsec from the central star towards the east-southeast, above the plane of the disc. Should this companion be detected in the near future, our model indicates that it should be moving away from the primary star at a rate of 6 mas/yr on the plane of the sky. Since our companion is inclined, we also predict that the spiral structure will appear to change with time, and not simply co-rotate with the companion.



rate research

Read More

Spiral arms in protoplanetary discs are thought to be linked to the presence of companions. We test the hypothesis that the double spiral arm morphology observed in the transition disc MWC 758 can be generated by an $approx 10$ M$_{rm Jup}$ companion on an eccentric orbit internal to the spiral arms. Previous studies on MWC 758 have assumed an external companion. We compare simulated observations from three dimensional hydrodynamics simulations of disc-companion interaction to scattered light, infrared and CO molecular line observations, taking into account observational biases. The inner companion hypothesis is found to explain the double spiral arms, as well as several additional features seen in MWC 758 -- the arc in the northwest, substructures inside the spiral arms, the cavity in CO isotopologues, and the twist in the kinematics. Testable predictions include detection of fainter spiral structure, detection of a point source south-southeast of the primary, and proper motion of the spiral arms.
Scattered light high-resolution imaging of the proto-planetary disc orbiting HD100453 shows two symmetric spiral arms, possibly launched by an external stellar companion. In this paper we present new, sensitive high-resolution ($sim$30 mas) Band 7 ALMA observations of this source. This is the first source where we find counterparts in the sub-mm continuum to both scattered light spirals. The CO J=3-2 emission line also shows two spiral arms; in this case they can be traced over a more extended radial range, indicating that the southern spiral arm connects to the companion position. This is clear evidence that the companion is responsible for launching the spirals. The pitch angle of the sub-millimeter continuum spirals ($sim 6 ^{circ}$) is lower than the one in scattered light ($sim 16 ^{circ}$). We show that hydrodynamical simulations of binary-disc interaction can account for the difference in pitch angle only if one takes into account that the midplane is colder than the upper layers of the disc, as expected for the case of externally irradiated discs.
We present high-resolution (30 mas or 130 au at 4.2 kpc) Atacama Large Millimeter/submillimeter Array observations at 1.2 mm of the disc around the forming O-type star AFGL 4176 mm1. The disc (AFGL 4176 mm1-main) has a radius of ~1000 au and contains significant structure, most notably a spiral arm on its redshifted side. We fitted the observed spiral with logarithmic and Archimedean spiral models. We find that both models can describe its structure, but the Archimedean spiral with a varying pitch angle fits its morphology marginally better. As well as signatures of rotation across the disc, we observe gas arcs in CH$_3$CN that connect to other millimetre continuum sources in the field, supporting the picture of interactions within a small cluster around AFGL 4176 mm1-main. Using local thermodynamic equilibrium modelling of the CH$_3$CN K-ladder, we determine the temperature and velocity field across the disc, and thus produce a map of the Toomre stability parameter. Our results indicate that the outer disc is gravitationally unstable and has already fragmented or is likely to fragment in the future, possibly producing further companions. These observations provide evidence that disc fragmentation is one possible pathway towards explaining the high fraction of multiple systems around high-mass stars.
Context. Planet formation is expected to take place in the first million years of a planetary system through various processes, which remain to be tested through observations. Aims. With the recent discovery, using ALMA, of two gaseous spiral arms inside the 120 au cavity and connected to dusty spirals, the famous protoplanetary disk around AB Aurigae presents a strong incentive for investigating the mechanisms that lead to giant planet formation. A candidate protoplanet located inside a spiral arm has already been claimed in an earlier study based on the same ALMA data. Methods. We used SPHERE at the Very Large Telescope (VLT) to perform near-infrared (IR) high-contrast imaging of AB Aur in polarized and unpolarized light in order to study the morphology of the disk and search for signs of planet formation. Results. SPHERE has delivered the deepest images ever obtained for AB Aur in scattered light. Among the many structures that are yet to be understood, we identified not only the inner spiral arms, but we also resolved a feature in the form of a twist in the eastern spiral at a separation of about 30 au. The twist of the spiral is perfectly reproduced with a planet-driven density wave model when projection effects are accounted for. We measured an azimuthal displacement with respect to the counterpart of this feature in the ALMA data, which is consistent with Keplerian motion on a 4-yr baseline. Another point sxce is detected near the edge of the inner ring, which is likely the result of scattering as opposed to the direct emission from a planet photosphere. We tentatively derived mass constraints for these two features. Conclusions. The twist and its apparent orbital motion could well be the first direct evidence of a connection between a protoplanet candidate and its manifestation as a spiral imprinted in the gas and dust distributions.
118 - Ya-Wen Tang 2017
We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.1; 14 au) images in $^{12}$CO (J=2-1) emission and in dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius of $sim$ 120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent with Keplerian rotation at an inclination of 23 degree. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at 60--80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remain puzzling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا