Do you want to publish a course? Click here

Are the spiral arms in the MWC 758 protoplanetary disc driven by a companion inside the cavity?

76   0   0.0 ( 0 )
 Added by Josh Calcino
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spiral arms in protoplanetary discs are thought to be linked to the presence of companions. We test the hypothesis that the double spiral arm morphology observed in the transition disc MWC 758 can be generated by an $approx 10$ M$_{rm Jup}$ companion on an eccentric orbit internal to the spiral arms. Previous studies on MWC 758 have assumed an external companion. We compare simulated observations from three dimensional hydrodynamics simulations of disc-companion interaction to scattered light, infrared and CO molecular line observations, taking into account observational biases. The inner companion hypothesis is found to explain the double spiral arms, as well as several additional features seen in MWC 758 -- the arc in the northwest, substructures inside the spiral arms, the cavity in CO isotopologues, and the twist in the kinematics. Testable predictions include detection of fainter spiral structure, detection of a point source south-southeast of the primary, and proper motion of the spiral arms.



rate research

Read More

Resolved ALMA and VLA observations indicate the existence of two dust traps in the protoplanetary disc MWC 758. By means of 2D gas+dust hydrodynamical simulations post-processed with 3D dust radiative transfer calculations, we show that the spirals in scattered light, the eccentric, asymmetric ring and the crescent-shaped structure in the (sub)millimetre can all be caused by two giant planets: a 1.5-Jupiter mass planet at 35 au (inside the spirals) and a 5-Jupiter mass planet at 140 au (outside the spirals). The outer planet forms a dust-trapping vortex at the inner edge of its gap (at ~85 au), and the continuum emission of this dust trap reproduces the ALMA and VLA observations well. The outer planet triggers several spiral arms which are similar to those observed in polarised scattered light. The inner planet also forms a vortex at the outer edge of its gap (at ~50 au), but it decays faster than the vortex induced by the outer planet, as a result of the discs turbulent viscosity. The vortex decay can explain the eccentric inner ring seen with ALMA as well as the low signal and larger azimuthal spread of this dust trap in VLA observations. Finding the thermal and kinematic signatures of both giant planets could verify the proposed scenario.
More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses -- companion-disk interaction and gravitational instability (GI) -- predict distinct motion for spirals. By imaging the MWC 758 spiral arm system at two epochs spanning ${sim}5$ yr using the SPHERE instrument on the Very Large Telescope (VLT), we test the two hypotheses for the first time. We find that the pattern speeds of the spirals are not consistent with the GI origin. Our measurements further evince the existence of a faint missing planet driving the disk arms. The average spiral pattern speed is $0.!^circ22pm0.!^circ03$ yr$^{-1}$, pointing to a driver at $172_{-14}^{+18}$ au around a $1.9$ $M_odot$ central star if it is on a circular orbit. In addition, we witness time varying shadowing effects on a global scale that are likely originated from an inner disk.
In this work we demonstrate that the inner spiral structure observed in AB Aurigae can be created by a binary star orbiting inside the dust cavity. We find that a companion with a mass-ratio of 0.25, semi-major axis of 40 au, eccentricity of 0.5, and inclination of 90{deg} produces gaseous spirals closely matching the ones observed in $^{12}$CO (2-1) line emission. Based on dust dynamics in circumbinary discs (Poblete, Cuello, and Cuadra 2019), we constrain the inclination of the binary with respect to the circumbinary disc to range between 60{deg} and 90{deg}. We predict that the stellar companion is located roughly 0.18 arcsec from the central star towards the east-southeast, above the plane of the disc. Should this companion be detected in the near future, our model indicates that it should be moving away from the primary star at a rate of 6 mas/yr on the plane of the sky. Since our companion is inclined, we also predict that the spiral structure will appear to change with time, and not simply co-rotate with the companion.
229 - S. Marino , S. Casassus , S. Perez 2015
The formation of planetesimals requires that primordial dust grains grow from micron- to km-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka & Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensity maximum to the north-west of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a non-axisymmetric parametric model inspired by a steady state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarised emission. Continuum observations at a different wavelength are necessary to conclude if the VLA-ALMA difference is an opacity or a real dust segregation.
Theoretical studies suggest that a giant planet around the young star MWC 758 could be responsible for driving the spiral features in its circumstellar disk. Here, we present a deep imaging campaign with the Large Binocular Telescope with the primary goal of imaging the predicted planet. We present images of the disk in two epochs in the $L^{prime}$ filter (3.8 $mu m$) and a third epoch in the $M^{prime}$ filter (4.8 $mu m$). The two prominent spiral arms are detected in each observation, which constitute the first images of the disk at $M^prime$, and the deepest yet in $L^prime$ ($Delta L^prime=$12.1 exterior to the disk at 5$sigma$ significance). We report the detection of a S/N$sim$3.9 source near the end of the Sourthern arm, and, from the sources detection at a consistent position and brightness during multiple epochs, we establish a $sim$90% confidence-level that the source is of astrophysical origin. We discuss the possibilities that this feature may be a) an unresolved disk feature, and b) a giant planet responsible for the spiral arms, with several arguments pointing in favor of the latter scenario. We present additional detection limits on companions exterior to the spiral arms, which suggest that a $lesssim$4 M$_{Jup}$ planet exterior to the spiral arms could have escaped detection. Finally, we do not detect the companion candidate interior to the spiral arms reported recently by Reggiani et al. (2018), although forward modelling suggests that such a source would have likely been detected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا