No Arabic abstract
Scattered light high-resolution imaging of the proto-planetary disc orbiting HD100453 shows two symmetric spiral arms, possibly launched by an external stellar companion. In this paper we present new, sensitive high-resolution ($sim$30 mas) Band 7 ALMA observations of this source. This is the first source where we find counterparts in the sub-mm continuum to both scattered light spirals. The CO J=3-2 emission line also shows two spiral arms; in this case they can be traced over a more extended radial range, indicating that the southern spiral arm connects to the companion position. This is clear evidence that the companion is responsible for launching the spirals. The pitch angle of the sub-millimeter continuum spirals ($sim 6 ^{circ}$) is lower than the one in scattered light ($sim 16 ^{circ}$). We show that hydrodynamical simulations of binary-disc interaction can account for the difference in pitch angle only if one takes into account that the midplane is colder than the upper layers of the disc, as expected for the case of externally irradiated discs.
In this work we demonstrate that the inner spiral structure observed in AB Aurigae can be created by a binary star orbiting inside the dust cavity. We find that a companion with a mass-ratio of 0.25, semi-major axis of 40 au, eccentricity of 0.5, and inclination of 90{deg} produces gaseous spirals closely matching the ones observed in $^{12}$CO (2-1) line emission. Based on dust dynamics in circumbinary discs (Poblete, Cuello, and Cuadra 2019), we constrain the inclination of the binary with respect to the circumbinary disc to range between 60{deg} and 90{deg}. We predict that the stellar companion is located roughly 0.18 arcsec from the central star towards the east-southeast, above the plane of the disc. Should this companion be detected in the near future, our model indicates that it should be moving away from the primary star at a rate of 6 mas/yr on the plane of the sky. Since our companion is inclined, we also predict that the spiral structure will appear to change with time, and not simply co-rotate with the companion.
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observations of the continuum emission ($lambda=1.3$ mm) and CO isotopologues ($^{12}$CO, $^{13}$CO, C$^{18}$O $J=2-1$) integrated intensity from the disc around the nearby ($d = 162$ pc), intermediate mass ($M_{star}=1.67,M_{odot}$) pre-main-sequence star CQ Tau. The data show an inner depression in continuum, and in both $^{13}$CO and C$^{18}$O emission. We employ a thermo-chemical model of the disc reproducing both continuum and gas radial intensity profiles, together with the disc SED. The models show that a gas inner cavity with size between 15 and 25 au is needed to reproduce the data with a density depletion factor between $sim 10^{-1}$ and $sim 10^{-3}$. The radial profile of the distinct cavity in the dust continuum is described by a Gaussian ring centered at $R_{rm dust}=53,$au and with a width of $sigma=13,$au. Three dimensional gas and dust numerical simulations of a disc with an embedded planet at a separation from the central star of $sim20,$au and with a mass of $sim 6textrm{-} 9,M_{rm Jup}$ reproduce qualitatively the gas and dust profiles of the CQ Tau disc. However, a one planet model appears not to be able to reproduce the dust Gaussian density profile predicted using the thermo-chemical modeling.
We present high angular resolution 0.2 arcsec continuum and molecular emission line Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of G17.64+0.16 in Band 6 (220GHz) taken as part of a campaign in search of circumstellar discs around (proto)-O-stars. At a resolution of 400au the main continuum core is essentially unresolved and isolated from other strong and compact emission peaks. At a resolution of 400au the main continuum core is essentially unresolved and isolated from other strong and compact emission peaks. We detect SiO (5-4) emission that is marginally resolved and elongated in a direction perpendicular to the large-scale outflow seen in the 13CO (2-1) line using the main ALMA array in conjunction with the Atacama Compact Array (ACA). Morphologically, the SiO appears to represent a disc-like structure. Using parametric models we show that the position-velocity profile of the SiO is consistent with the Keplerian rotation of a disc around an object between 10-30Mo in mass, only if there is also radial expansion from a separate structure. The radial motion component can be interpreted as a disc wind from the disc surface. Models with a central stellar object mass between 20 and 30Mo are the most consistent with the stellar luminosity (100000 Lo) and indicative of an O-type star. The H30a millimetre recombination line (231.9GHz) is also detected, but spatially unresolved, and is indicative of a very compact, hot, ionised region co-spatial with the dust continuum core. Accounting for all observables, we suggest that G17.64 is consistent with a O-type young stellar object in the final stages of protostellar assembly, driving a wind, but that has not yet developed into a compact HII region. The existance and detection of the disc in G17.64 is likely related to its isolated and possibly more evolved nature, traits which may underpin discs in similar sources.
Recent observations have revealed that most proto-planetary discs show a pattern of bright rings and dark gaps. However, most of the high-resolution observations have focused only on the continuum emission. In this Paper we present high-resolution ALMA band 7 (0.89mm) observations of the disc around the star CI Tau in the $^{12}$CO & $^{13}$CO $J=3$-2 and CS $J=7$-6 emission lines. Our recent work demonstrated that the disc around CI Tau contains three gaps and rings in continuum emission, and we look for their counterparts in the gas emission. While we find no counterpart of the third gap and ring in $^{13}$CO, the disc has a gap in emission at the location of the second continuum ring (rather than gap). We demonstrate that this is mostly an artefact of the continuum subtraction, although a residual gap still remains after accounting for this effect. Through radiative transfer modelling we propose this is due to the inner disc shadowing the outer parts of the disc and making them colder. This raises a note of caution in mapping high-resolution gas emission lines observations to the gas surface density - while possible, this needs to be done carefully. In contrast to $^{13}$CO, CS emission shows instead a ring morphology, most likely due to chemical effects. Finally, we note that $^{12}$CO is heavily absorbed by the foreground preventing any morphological study using this line.
We present high-resolution (30 mas or 130 au at 4.2 kpc) Atacama Large Millimeter/submillimeter Array observations at 1.2 mm of the disc around the forming O-type star AFGL 4176 mm1. The disc (AFGL 4176 mm1-main) has a radius of ~1000 au and contains significant structure, most notably a spiral arm on its redshifted side. We fitted the observed spiral with logarithmic and Archimedean spiral models. We find that both models can describe its structure, but the Archimedean spiral with a varying pitch angle fits its morphology marginally better. As well as signatures of rotation across the disc, we observe gas arcs in CH$_3$CN that connect to other millimetre continuum sources in the field, supporting the picture of interactions within a small cluster around AFGL 4176 mm1-main. Using local thermodynamic equilibrium modelling of the CH$_3$CN K-ladder, we determine the temperature and velocity field across the disc, and thus produce a map of the Toomre stability parameter. Our results indicate that the outer disc is gravitationally unstable and has already fragmented or is likely to fragment in the future, possibly producing further companions. These observations provide evidence that disc fragmentation is one possible pathway towards explaining the high fraction of multiple systems around high-mass stars.