Do you want to publish a course? Click here

An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges

170   0   0.0 ( 0 )
 Added by David Charte
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In many machine learning tasks, learning a good representation of the data can be the key to building a well-performant solution. This is because most learning algorithms operate with the features in order to find models for the data. For instance, classification performance can improve if the data is mapped to a space where classes are easily separated, and regression can be facilitated by finding a manifold of data in the feature space. As a general rule, features are transformed by means of statistical methods such as principal component analysis, or manifold learning techniques such as Isomap or locally linear embedding. From a plethora of representation learning methods, one of the most versatile tools is the autoencoder. In this paper we aim to demonstrate how to influence its learned representations to achieve the desired learning behavior. To this end, we present a series of learning tasks: data embedding for visualization, image denoising, semantic hashing, detection of abnormal behaviors and instance generation. We model them from the representation learning perspective, following the state of the art methodologies in each field. A solution is proposed for each task employing autoencoders as the only learning method. The theoretical developments are put into practice using a selection of datasets for the different problems and implementing each solution, followed by a discussion of the results in each case study and a brief explanation of other six learning applications. We also explore the current challenges and approaches to explainability in the context of autoencoders. All of this helps conclude that, thanks to alterations in their structure as well as their objective function, autoencoders may be the core of a possible solution to many problems which can be modeled as a transformation of the feature space.



rate research

Read More

This paper describes InfoCatVAE, an extension of the variational autoencoder that enables unsupervised disentangled representation learning. InfoCatVAE uses multimodal distributions for the prior and the inference network and then maximizes the evidence lower bound objective (ELBO). We connect the new ELBO derived for our model with a natural soft clustering objective which explains the robustness of our approach. We then adapt the InfoGANs method to our setting in order to maximize the mutual information between the categorical code and the generated inputs and obtain an improved model.
Domain adaptation aims to exploit the knowledge in source domain to promote the learning tasks in target domain, which plays a critical role in real-world applications. Recently, lots of deep learning approaches based on autoencoders have achieved a significance performance in domain adaptation. However, most existing methods focus on minimizing the distribution divergence by putting the source and target data together to learn global feature representations, while they do not consider the local relationship between instances in the same category from different domains. To address this problem, we propose a novel Semi-Supervised Representation Learning framework via Dual Autoencoders for domain adaptation, named SSRLDA. More specifically, we extract richer feature representations by learning the global and local feature representations simultaneously using two novel autoencoders, which are referred to as marginalized denoising autoencoder with adaptation distribution (MDAad) and multi-class marginalized denoising autoencoder (MMDA) respectively. Meanwhile, we make full use of label information to optimize feature representations. Experimental results show that our proposed approach outperforms several state-of-the-art baseline methods.
Increasing volume of Electronic Health Records (EHR) in recent years provides great opportunities for data scientists to collaborate on different aspects of healthcare research by applying advanced analytics to these EHR clinical data. A key requirement however is obtaining meaningful insights from high dimensional, sparse and complex clinical data. Data science approaches typically address this challenge by performing feature learning in order to build more reliable and informative feature representations from clinical data followed by supervised learning. In this paper, we propose a predictive modeling approach based on deep learning based feature representations and word embedding techniques. Our method uses different deep architectures (stacked sparse autoencoders, deep belief network, adversarial autoencoders and variational autoencoders) for feature representation in higher-level abstraction to obtain effective and robust features from EHRs, and then build prediction models on top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled data is scarce. We investigate the performance of representation learning through a supervised learning approach. Our focus is to present a comparative study to evaluate the performance of different deep architectures through supervised learning and provide insights in the choice of deep feature representation techniques. Our experiments demonstrate that for small data sets, stacked sparse autoencoder demonstrates a superior generality performance in prediction due to sparsity regularization whereas variational autoencoders outperform the competing approaches for large data sets due to its capability of learning the representation distribution.
Latent variable models can be used to probabilistically fill-in missing data entries. The variational autoencoder architecture (Kingma and Welling, 2014; Rezende et al., 2014) includes a recognition or encoder network that infers the latent variables given the data variables. However, it is not clear how to handle missing data variables in this network. The factor analysis (FA) model is a basic autoencoder, using linear encoder and decoder networks. We show how to calculate exactly the latent posterior distribution for the factor analysis (FA) model in the presence of missing data, and note that this solution implies that a different encoder network is required for each pattern of missingness. We also discuss various approximations to the exact solution. Experiments compare the effectiveness of various approaches to filling in the missing data.
In recent years, machine learning has received increased interest both as an academic research field and as a solution for real-world business problems. However, the deployment of machine learning models in production systems can present a number of issues and concerns. This survey reviews published reports of deploying machine learning solutions in a variety of use cases, industries and applications and extracts practical considerations corresponding to stages of the machine learning deployment workflow. Our survey shows that practitioners face challenges at each stage of the deployment. The goal of this paper is to layout a research agenda to explore approaches addressing these challenges.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا