Do you want to publish a course? Click here

InfoCatVAE: Representation Learning with Categorical Variational Autoencoders

81   0   0.0 ( 0 )
 Added by Edouard Pineau
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper describes InfoCatVAE, an extension of the variational autoencoder that enables unsupervised disentangled representation learning. InfoCatVAE uses multimodal distributions for the prior and the inference network and then maximizes the evidence lower bound objective (ELBO). We connect the new ELBO derived for our model with a natural soft clustering objective which explains the robustness of our approach. We then adapt the InfoGANs method to our setting in order to maximize the mutual information between the categorical code and the generated inputs and obtain an improved model.



rate research

Read More

A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.
Increasing volume of Electronic Health Records (EHR) in recent years provides great opportunities for data scientists to collaborate on different aspects of healthcare research by applying advanced analytics to these EHR clinical data. A key requirement however is obtaining meaningful insights from high dimensional, sparse and complex clinical data. Data science approaches typically address this challenge by performing feature learning in order to build more reliable and informative feature representations from clinical data followed by supervised learning. In this paper, we propose a predictive modeling approach based on deep learning based feature representations and word embedding techniques. Our method uses different deep architectures (stacked sparse autoencoders, deep belief network, adversarial autoencoders and variational autoencoders) for feature representation in higher-level abstraction to obtain effective and robust features from EHRs, and then build prediction models on top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled data is scarce. We investigate the performance of representation learning through a supervised learning approach. Our focus is to present a comparative study to evaluate the performance of different deep architectures through supervised learning and provide insights in the choice of deep feature representation techniques. Our experiments demonstrate that for small data sets, stacked sparse autoencoder demonstrates a superior generality performance in prediction due to sparsity regularization whereas variational autoencoders outperform the competing approaches for large data sets due to its capability of learning the representation distribution.
Training of discrete latent variable models remains challenging because passing gradient information through discrete units is difficult. We propose a new class of smoothing transformations based on a mixture of two overlapping distributions, and show that the proposed transformation can be used for training binary latent models with either directed or undirected priors. We derive a new variational bound to efficiently train with Boltzmann machine priors. Using this bound, we develop DVAE++, a generative model with a global discrete prior and a hierarchy of convolutional continuous variables. Experiments on several benchmarks show that overlapping transformations outperform other recent continuous relaxations of discrete latent variables including Gumbel-Softmax (Maddison et al., 2016; Jang et al., 2016), and discrete variational autoencoders (Rolfe 2016).
Studying general quantum many-body systems is one of the major challenges in modern physics because it requires an amount of computational resources that scales exponentially with the size of the system.Simulating the evolution of a state, or even storing its description, rapidly becomes intractable for exact classical algorithms. Recently, machine learning techniques, in the form of restricted Boltzmann machines, have been proposed as a way to efficiently represent certain quantum states with applications in state tomography and ground state estimation. Here, we introduce a new representation of states based on variational autoencoders. Variational autoencoders are a type of generative model in the form of a neural network. We probe the power of this representation by encoding probability distributions associated with states from different classes. Our simulations show that deep networks give a better representation for states that are hard to sample from, while providing no benefit for random states. This suggests that the probability distributions associated to hard quantum states might have a compositional structure that can be exploited by layered neural networks. Specifically, we consider the learnability of a class of quantum states introduced by Fefferman and Umans. Such states are provably hard to sample for classical computers, but not for quantum ones, under plausible computational complexity assumptions. The good level of compression achieved for hard states suggests these methods can be suitable for characterising states of the size expected in first generation quantum hardware.
Variational autoencoders (VAE) are a powerful and widely-used class of models to learn complex data distributions in an unsupervised fashion. One important limitation of VAEs is the prior assumption that latent sample representations are independent and identically distributed. However, for many important datasets, such as time-series of images, this assumption is too strong: accounting for covariances between samples, such as those in time, can yield to a more appropriate model specification and improve performance in downstream tasks. In this work, we introduce a new model, the Gaussian Process (GP) Prior Variational Autoencoder (GPPVAE), to specifically address this issue. The GPPVAE aims to combine the power of VAEs with the ability to model correlations afforded by GP priors. To achieve efficient inference in this new class of models, we leverage structure in the covariance matrix, and introduce a new stochastic backpropagation strategy that allows for computing stochastic gradients in a distributed and low-memory fashion. We show that our method outperforms conditional VAEs (CVAEs) and an adaptation of standard VAEs in two image data applications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا