No Arabic abstract
Second harmonic generation in nonlinear materials can be greatly enhanced by realizing doubly-resonant cavities with high quality factors. However, fulfilling such doubly resonant condition in photonic crystal (PhC) cavities is a long-standing challenge, because of the difficulty in engineering photonic bandgaps around both frequencies. Here, by implementing a second-harmonic bound state in the continuum (BIC) and confining it with a heterostructure design, we show the first doubly-resonant PhC slab cavity with $2.4times10^{-2}$ W$^{-1}$ conversion efficiency under continuous wave excitation. We also report the confirmation of highly normal-direction concentrated far-field emission pattern with radial polarization at the second harmonic frequency. These results represent a solid verification of previous theoretical predictions and a cornerstone achievement, not only for nonlinear frequency conversion but also for vortex beam generation and prospective nonclassical sources of radiation.
We theoretically study the generation of optical frequency combs and corresponding pulse trains in doubly resonant intracavity second-harmonic generation (SHG). We find that, despite the large temporal walk-off characteristic of realistic cavity systems, the nonlinear dynamics can be accurately and efficiently modelled using a pair of coupled mean-field equations. Through rigorous stability analysis of the systems steady-state continuous wave solutions, we demonstrate that walk-off can give rise to a new, previously unexplored regime of temporal modulation instability (MI). Numerical simulations performed in this regime reveal rich dynamical behaviours, including the emergence of temporal patterns that correspond to coherent optical frequency combs. We also demonstrate that the two coupled equations that govern the doubly resonant cavity behaviour can, under typical conditions, be reduced to a single mean-field equation akin to that describing the dynamics of singly resonant cavity SHG [F. Leo et al., Phys. Rev. Lett. 116, 033901 (2016)]. This reduced approach allows us to derive a simple expression for the MI gain, thus permitting to acquire significant insight into the underlying physics. We anticipate that our work will have wide impact on the study of frequency combs in emerging doubly resonant cavity SHG platforms, including quadratically nonlinear microresonators.
We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064nm, we predict second harmonic conversion efficiencies approximately five orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly resonant nanocavities with low mode volume and large quality factor by localized defects in a photonic crystal structure. We build on this approach by applying an evolutionary optimisation algorithm in connection with Maxwell equations solvers, showing that the proposed design recipe can be applied to any material platform. We explicitly calculate the second-harmonic generation efficiency for doubly resonant photonic crystal cavity designs in typical III-V semiconductor materials, such as GaN and AlGaAs, targeting a fundamental harmonic at telecom wavelengths, and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realisation of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
The concept of optical bound states in the continuum (BICs) underpins the existence of strongly localized waves embedded into the radiation spectrum that can enhance the electromagnetic fields in subwavelength photonic structures. Early studies of optical BICs in waveguides and photonic crystals uncovered their topological properties, and the concept of quasi-BIC metasurfaces facilitated applications of strong light-matter interactions to biosensing, lasing, and low-order nonlinear processes. Here we employ BIC-empowered dielectric metasurfaces to generate efficiently high optical harmonics up to the 11th order. We optimize a BIC mode for the first few harmonics and observe a transition between perturbative and nonperturbative nonlinear regimes. We also suggest a general strategy for designing subwavelength structures with strong resonances and nonperturbative nonlinearities. Our work bridges the fields of perturbative and nonperturbative nonlinear optics on the subwavelength scale.
Bound states in the continuum (BICs), a concept from quantum mechanics, are ubiquitous physical phenomena where waves will be completely locked inside physical systems without energy leaky. Such a physical phenomenon in optics will provide a platform for optical mode confinement to strengthen local field enhancement in nonlinear optics. Here we utilize an optical system consisting of asymmetric nanogratings and waveguide of thin film lithium niobate (LiNbO3) material to enhance second harmonic response near BICs. By breaking the symmetry of grating periodicity, we realize strong local field confined inside waveguide up to 25 times normalized to incident field (with dissymmetric factor of 0.2), allowing strong light-matter interaction in nonlinear material. From the numerical simulation, we theoretically demonstrate that such an optical system can greatly enhance second harmonic intensity enhancement of about 104 compared with undersigned LiNbO3 film and conversion efficiency reaching 1.53e-5 for dissymmetric factor=0.2 under illumination of 1.33 GW/(suqare cm). Surprisingly, we can predict that a giant enhancement of second harmonic conversion efficiency will exceed 8.13e-5 for dissymmetric factor=0.1 when the optical system is extremely close to BICs. We believe that such an optical system to trap local field inside is also accessible to promote the application of thin film lithium niobate in the field of integrated nonlinear optics.