Do you want to publish a course? Click here

Enhanced second harmonic generation from resonant GaAs gratings

175   0   0.0 ( 0 )
 Added by Domenico de Ceglia
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength displays sharp resonances characterized by dramatic enhancements of local fields and favorable conditions for second harmonic generation, even in regimes of strong linear absorption at the harmonic wavelength. In particular, in a GaAs grating pumped at 1064nm, we predict second harmonic conversion efficiencies approximately five orders of magnitude larger than conversion rates achievable in either bulk or etalon structures of the same material.

rate research

Read More

Nano-resonator integrated with two-dimensional materials (e.g. transition metal dichalcogenides) have recently emerged as a promising nano-optoelectronic platform. Here we demonstrate resonatorenhanced second-harmonic generation (SHG) in tungsten diselenide using a silicon photonic crystal cavity. By pumping the device with the ultrafast laser pulses near the cavity mode at the telecommunication wavelength, we observe a near visible SHG with a narrow linewidth and near unity linear polarization, originated from the coupling of the pump photon to the cavity mode. The observed SHG is enhanced by factor of ~200 compared to a bare monolayer on silicon. Our results imply the efficacy of cavity integrated monolayer materials for nonlinear optics and the potential of building a silicon-compatible second-order nonlinear integrated photonic platform.
We theoretically study the generation of optical frequency combs and corresponding pulse trains in doubly resonant intracavity second-harmonic generation (SHG). We find that, despite the large temporal walk-off characteristic of realistic cavity systems, the nonlinear dynamics can be accurately and efficiently modelled using a pair of coupled mean-field equations. Through rigorous stability analysis of the systems steady-state continuous wave solutions, we demonstrate that walk-off can give rise to a new, previously unexplored regime of temporal modulation instability (MI). Numerical simulations performed in this regime reveal rich dynamical behaviours, including the emergence of temporal patterns that correspond to coherent optical frequency combs. We also demonstrate that the two coupled equations that govern the doubly resonant cavity behaviour can, under typical conditions, be reduced to a single mean-field equation akin to that describing the dynamics of singly resonant cavity SHG [F. Leo et al., Phys. Rev. Lett. 116, 033901 (2016)]. This reduced approach allows us to derive a simple expression for the MI gain, thus permitting to acquire significant insight into the underlying physics. We anticipate that our work will have wide impact on the study of frequency combs in emerging doubly resonant cavity SHG platforms, including quadratically nonlinear microresonators.
Nonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense nonlinear interactions of nanophotonic waveguides can be leveraged to meet these requirements. Here we demonstrate second harmonic generation (SHG) in GaAs-on-insulator waveguides with unprecedented efficiency of 40 W$^{-1}$ for a single-pass device. This result is achieved by minimizing the propagation loss and optimizing phase-matching. We investigate surface-state absorption and design the waveguide geometry for modal phase-matching with tolerance to fabrication variation. A 2.0 $mu$m pump is converted to a 1.0 $mu$m signal in a length of 2.9 mm with a wide signal bandwidth of 148 GHz. Tunable and efficient operation is demonstrated over a temperature range of 45 $^{circ}$C with a slope of 0.24 nm/$^{circ}$C. Wafer-bonding between GaAs and SiO$_2$ is optimized to minimize waveguide loss, and the devices are fabricated on 76 mm wafers with high uniformity. We expect this device to enable fully integrated self-referenced frequency combs and high-rate entangled photon pair generation.
We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on metal substrates have been previously studied in the context of the extraordinary transmission of light. The transmission process is driven by a number of physical mechanisms, whose characteristics and relative importance depend on the thickness of the metallic substrate, slit size, and slit separation. In this work we show that a combination of cavity effects and surface plasmon generation gives rise to enhanced second harmonic generation in the regime of extraordinary transmittance of the pump field. We have studied both forward and backward second harmonic generation conversion efficiencies as functions of the geometrical parameters, and how they relate to pump transmission efficiency. The resonance phenomenon is evident in the generated second harmonic signal, as conversion efficiency depends on the duration of incident pump pulse, and hence its bandwidth. Our results show that the excitation of tightly confined modes as well as the combination of enhanced transmission and nonlinear processes can lead to several potential new applications such as photo-lithography, scanning microscopy, and high-density optical data storage devices.
We describe an approach based on topology optimization that enables automatic discovery of wavelength-scale photonic structures for achieving high-efficiency second-harmonic generation (SHG). A key distinction from previous formulation and designs that seek to maximize Purcell factors at individual frequencies is that our method not only aims to achieve frequency matching (across an entire octave) and large radiative lifetimes, but also optimizes the equally important nonlinear--coupling figure of merit $bar{beta}$, involving a complicated spatial overlap-integral between modes. We apply this method to the particular problem of optimizing micropost and grating-slab cavities (one-dimensional multilayered structures) and demonstrate that a variety of material platforms can support modes with the requisite frequencies, large lifetimes $Q > 10^4$, small modal volumes $sim (lambda/n)^3$, and extremely large $bar{beta} gtrsim 10^{-2}$, leading to orders of magnitude enhancements in SHG efficiency compared to state of the art photonic designs. Such giant $bar{beta}$ alleviate the need for ultra-narrow linewidths and thus pave the way for wavelength-scale SHG devices with faster operating timescales and higher tolerance to fabrication imperfections.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا