Do you want to publish a course? Click here

Scalable near-infrared graphene plasmonic resonators exhibiting strong non-local and electron quantization effects

283   0   0.0 ( 0 )
 Added by Joel Siegel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene plasmonic resonators have been broadly studied in the terahertz and mid-infrared ranges because of their electrical tunability and large confinement factors which can enable dramatic enhancement of light-matter coupling. In this work, we demonstrate that the characteristic scaling laws of graphene plasmons change for smaller (< 40 nm) plasmonic wavelengths, expanding the operational frequencies of graphene plasmonic resonators into the near-infrared (NIR) and modifying their optical confinement properties. We utilize a novel bottom-up block copolymer lithography method that substantially improves upon top-down methods to create resonators as narrow as 12 nm over centimeter-scale areas. Measurements of these structures reveal that their plasmonic resonances are strongly influenced by non-local and quantum effects, which push their resonant frequency into the NIR (2.2 um), almost double the frequency of previous experimental works. The confinement factors of these resonators, meanwhile, reach 137 +/- 25, amongst the largest reported in literature for an optical cavity. While our findings indicate that the enhancement of some forbidden transitions are an order of magnitude weaker than predicted, the combined NIR response and large confinement of these structures make them an attractive platform to explore ultra-strongly enhanced spontaneous emission.

rate research

Read More

We theoretically investigate the plasmonic heating of graphene-based systems under the mid-infrared laser irradiation, where periodic arrays of graphene plasmonic resonators are placed on dielectric thin films. Optical resonances are sensitive to structural parameters and the number of graphene layers. Under mid-infrared laser irradiation, the steady-state temperature gradients are calculated. We find that graphene plasmons significantly enhance the confinement of electromagnetic fields in the system and lead to a large temperature rise compared to the case without graphene. The correlations between temperature change and the optical power, laser spot, and thermal conductivity of dielectric layer in these systems are discussed. Our numerical results are in accordance with experiments.
We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external responsivity~12.2V/W with a 3dB bandwidth~42GHz. We utilize Au split-gates with a$sim$100nm gap to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele and datacom modules
Ultrasound detection is one of the most important nondestructive subsurface characterization tools of materials, whose goal is to laterally resolve the subsurface structure with nanometer or even atomic resolution. In recent years, graphene resonators attracted attention as loudspeaker and ultrasound radio, showing its potential to realize communication systems with air-carried ultrasound. Here we show a graphene resonator that detects ultrasound vibrations propagating through the substrate on which it was fabricated. We achieve ultimately a resolution of $approx7$~pm/$mathrm{sqrt Hz}$ in ultrasound amplitude at frequencies up to 100~MHz. Thanks to an extremely high nonlinearity in the mechanical restoring force, the resonance frequency itself can also be used for ultrasound detection. We observe a shift of 120~kHz at a resonance frequency of 65~MHz for an induced vibration amplitude of 100~pm with a resolution of 25~pm. Remarkably, the nonlinearity also explains the generally observed asymmetry in the resonance frequency tuning of the resonator when pulled upon with an electrostatic gate. This work puts forward a sensor design that fits onto an atomic force microscope cantilever and therefore promises direct ultrasound detection at the nanoscale for nondestructive subsurface characterization.
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of $10^{11}$ Jones and a gain up to $10^{6}$, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of $|E/E_{0}|approx20$ for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors.
Metal-Nb$_{2}$O$_{5-x}$-metal memdiodes exhibiting rectification, hysteresis, and capacitance are demonstrated for applications in neuromorphic circuitry. These devices do not require any post-fabrication treatments such as filament creation by electroforming that would impede circuit scalability. Instead these devices operate due to Poole-Frenkel defect controlled transport where the high defect density is inherent to the Nb$_{2}$O$_{5-x}$ deposition rather than post-fabrication treatments. Temperature dependent measurements reveal that the dominant trap energy is 0.22 eV suggesting it results from the oxygen deficiencies in the amorphous Nb$_{2}$O$_{5-x}$. Rectification occurs due to a transition from thermionic emission to tunneling current and is present even in thick devices (> 100 nm) due to charge trapping which controls the tunneling distance. The turn-on voltage is linearly proportional to the Schottky barrier height and, in contrast to traditional metal-insulator-metal diodes, is logarithmically proportional to the device thickness. Hysteresis in the I-V curve occurs due to the current limited filling of traps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا