Do you want to publish a course? Click here

Waveguide-integrated, plasmonic enhanced graphene photodetectors

90   0   0.0 ( 0 )
 Added by Andrea Ferrari
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a micrometer scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed and optimized to directly generate a photovoltage and has an external responsivity~12.2V/W with a 3dB bandwidth~42GHz. We utilize Au split-gates with a$sim$100nm gap to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele and datacom modules



rate research

Read More

Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of $10^{11}$ Jones and a gain up to $10^{6}$, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of $|E/E_{0}|approx20$ for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors.
We report vertically-illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the PDs are integrated with an optical cavity, resulting in multiple reflections at resonance, and enhanced absorption in graphene. Our devices have wavelength-dependent photoresponse with external (internal) responsivity~20mA/W (0.25A/W). The spectral-selectivity may be further tuned by varying the cavity resonant wavelength. Our devices pave the way for developing high responsivity hybrid graphene-Si free-space illuminated PDs for free-space optical communications, coherence optical tomography and light-radars
A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 {mu}m is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorption in graphene is enhanced while the metal absorption loss is reduced simultaneously, which helps greatly improve the responsivity as well as shorten the absorption region for achieving fast responses. Furthermore, metal-graphene-metal sandwiched electrodes are introduced to reduce the metal-graphene contact resistance, which is also helpful for improving the response speed. When the photodetector operates at 2 {mu}m, the measured 3dB-bandwidth is >20 GHz (which is limited by the experimental setup) while the 3dB-bandwith calculated from the equivalent circuit with the parameters extracted from the measured S11 is as high as ~100 GHz. To the best of our knowledge, it is the first time to report the waveguide photodetector at 2 {mu}m with a 3dB-bandwidth over 20 GHz. Besides, the present photodetectors also work very well at 1.55 {mu}m. The measured responsivity is about 0.4 A/W under a bias voltage of -0.3 V for an optical power of 0.16 mW, while the measured 3dB-bandwidth is over 40 GHz (limited by the test setup) and the 3 dB-bandwidth estimated from the equivalent circuit is also as high as ~100 GHz, which is one of the best results reported for silicon-graphene photodetectors at 1.55 {mu}m.
We present a graphene photodetector for telecom applications based on a silicon photonic crystal defect waveguide. The photonic structure is used to confine the propagating light in a narrow region in the graphene layer to enhance light-matter interaction. Additionally, it is utilized as split-gate electrode to create a pn-junction in the vicinity of the optical absorption region. The photonic crystal defect waveguide allows for optimal photo-thermoelectric conversion of the occurring temperature profile in graphene into a photovoltage due to additional silicon slabs on both sides of the waveguide, enhancing the device response as compared to a conventional slot waveguide design. A photoresponsivity of 4.7 V/W and a (setup-limited) electrical bandwidth of 18 GHz are achieved. Under a moderate bias of 0.4 V we obtain a photoconductive responsivity of 0.17 A/W.
We report on the integration of large area CVD grown single- and bilayer graphene transparent conductive electrodes (TCEs) on amorphous silicon multispectral photodetectors. The broadband transmission of graphene results in 440% enhancement of the detectors spectral response in the ultraviolet (UV) region at {lambda} = 320 nm compared to reference devices with conventional aluminum doped zinc oxide (ZnO:Al) electrodes. The maximum responsivity of the multispectral photodetectors can be tuned in their wavelength from 320 nm to 510 nm by an external bias voltage, allowing single pixel detection of UV to visible light. Graphene electrodes further enable fully flexible diodes on polyimide substrates. Here, an upgrade from single to bilayer graphene boosts the maximum photoresponsivity from 134 mA $W^{-1}$ to 239 mA $W^{-1}$. Interference patterns that are present in conventional TCE devices are suppressed as a result of the atomically thin graphene electrodes. The proposed detectors may be of interest in fields of UV/VIS spectroscopy or for biomedical and life science applications, where the extension to the UV range can be essential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا