Do you want to publish a course? Click here

Tracking and tracing in the UK: a dynamic causal modelling study

82   0   0.0 ( 0 )
 Added by Karl Friston
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

By equipping a previously reported dynamic causal model of COVID-19 with an isolation state, we modelled the effects of self-isolation consequent on tracking and tracing. Specifically, we included a quarantine or isolation state occupied by people who believe they might be infected but are asymptomatic, and only leave if they test negative. We recovered maximum posteriori estimates of the model parameters using time series of new cases, daily deaths, and tests for the UK. These parameters were used to simulate the trajectory of the outbreak in the UK over an 18-month period. Several clear-cut conclusions emerged from these simulations. For example, under plausible (graded) relaxations of social distancing, a rebound of infections within weeks is unlikely. The emergence of a later second wave depends almost exclusively on the rate at which we lose immunity, inherited from the first wave. There exists no testing strategy that can attenuate mortality rates, other than by deferring or delaying a second wave. A sufficiently powerful tracking and tracing policy--implemented at the time of writing (10th May 2020)--will defer any second wave beyond a time horizon of 18 months. Crucially, this deferment is within current testing capabilities (requiring an efficacy of tracing and tracking of about 20% of asymptomatic infected cases, with less than 50,000 tests per day). These conclusions are based upon a dynamic causal model for which we provide some construct and face validation, using a comparative analysis of the United Kingdom and Germany, supplemented with recent serological studies.



rate research

Read More

This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to both the consequences of relaxing lockdown and the propensity for a second wave of infections. Using a dynamic causal model of reported cases and deaths from multiple countries, we evaluated the evidence models of progressively longer periods of immunity. The results speak to an effective population immunity of about three months that, under the model, defers any second wave for approximately six months in most countries. This may have implications for the window of opportunity for tracking and tracing, as well as for developing vaccination programmes, and other therapeutic interventions.
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modelled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parame- ters for finding some analytical approximate solutions. Furthermore, using the local sensitivity method is another important step forward in this study because it helps to identify critical model parameters. Numerical simulations are provided using Matlab for different parameters and initial conditions.
This technical note presents a framework for investigating the underlying mechanisms of neurovascular coupling in the human brain using multi-modal magnetoencephalography (MEG) and functional magnetic resonance (fMRI) neuroimaging data. This amounts to estimating the evidence for several biologically informed models of neurovascular coupling using variational Bayesian methods and selecting the most plausible explanation using Bayesian model comparison. First, fMRI data is used to localise active neuronal sources. The coordinates of neuronal sources are then used as priors in the specification of a DCM for MEG, in order to estimate the underlying generators of the electrophysiological responses. The ensuing estimates of neuronal parameters are used to generate neuronal drive functions, which model the pre or post synaptic responses to each experimental condition in the fMRI paradigm. These functions form the input to a model of neurovascular coupling, the parameters of which are estimated from the fMRI data. This establishes a Bayesian fusion technique that characterises the BOLD response - asking, for example, whether instantaneous or delayed pre or post synaptic signals mediate haemodynamic responses. Bayesian model comparison is used to identify the most plausible hypotheses about the causes of the multimodal data. We illustrate this procedure by comparing a set of models of a single-subject auditory fMRI and MEG dataset. Our exemplar analysis suggests that the origin of the BOLD signal is mediated instantaneously by intrinsic neuronal dynamics and that neurovascular coupling mechanisms are region-specific. The code and example dataset associated with this technical note are available through the statistical parametric mapping (SPM) software package.
147 - Spencer A. Thomas 2021
We analysed publicly available data on place of occurrence of COVID-19 deaths from national statistical agencies in the UK between March 9 2020 and February 28 2021. We introduce a modified Weibull model that describes the deaths due to COVID-19 at a national and place of occurrence level. We observe similar trends in the UK where deaths due to COVID-19 first peak in Homes, followed by Hospitals and Care Homes 1-2 weeks later in the first and second waves. This is in line with the infectious period of the disease, indicating a possible transmission vehicle between the settings. Our results show that the first wave is characterised by fast growth and a slow reduction after the peak in deaths due to COVID-19. The second and third waves have the converse property, with slow growth and a rapid decrease from the peak. This difference may result from behavioural changes in the population (social distancing, masks, etc). Finally, we introduce a double logistic model to describe the dynamic proportion of COVID-19 deaths occurring in each setting. This analysis reveals that the proportion of COVID-19 deaths occurring in Care Homes increases from the start of the pandemic and past the peak in total number of COVID-19 deaths in the first wave. After the catastrophic impact in the first wave, the proportion of COVID-19 deaths occurring in Care Homes gradually decreased from is maximum after the first wave indicating residence were better protected in the second and third waves compared to the first.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا