No Arabic abstract
Nonlinear and hysteretic electrical devices are needed for applications from circuit protection to next-generation computing. Widely-studied devices for resistive switching are based on mass transport, such as the drift of ions in an electric field, and on collective phenomena, such as insulator-metal transitions. We ask whether the large photoconductive response known in many semiconductors can be stimulated in the dark and harnessed to design electrical devices. We design and test devices based on photoconductive CdS, and our results are consistent with the hypothesis that resistive switching arises from point defects that switch between deep- and shallow-donor configurations: defect level switching (DLS). This new electronic device design principle - photoconductivity without photons - leverages decades of research on photoconductivity and defect spectroscopy. It is easily generalized and will enable the rational design of new nonlinear, hysteretic devices for future electronics.
We model electrical conductivity in metastable amorphous $Ge_{2}Sb_{2}Te_{5}$ using independent contributions from temperature and electric field to simulate phase change memory devices and Ovonic threshold switches. 3D, 2D-rotational, and 2D finite element simulations of pillar cells capture threshold switching and show filamentary conduction in the on-state. The model can be tuned to capture switching fields from ~5 to 40 MV/m at room temperature using the temperature dependent electrical conductivity measured for metastable amorphous GST; lower and higher fields are obtainable using different temperature dependent electrical conductivities. We use a 2D fixed out-of-plane-depth simulation to simulate an Ovonic threshold switch in series with a $Ge_{2}Sb_{2}Te_{5}$ phase change memory cell to emulate a crossbar memory element. The simulation reproduces the pre-switching current and voltage characteristics found experimentally for the switch + memory cell, isolated switch, and isolated memory cell.
We report on fabrication and characterization of electronic devices printed with inks of quasi-1D van der Waals materials. The quasi-1D van der Waals materials are characterized by 1D motifs in their crystal structure, which allows for their exfoliation into bundles of atomic chains. The ink was prepared by the liquid-phase exfoliation of crystals of TiS3 semiconductor into quasi-1D nanoribbons dispersed in a mixture of ethanol and ethylene glycol. The temperature dependent electrical measurements indicate that electron transport in the printed devices is dominated by the electron hopping mechanisms. The low-frequency electronic noise in the printed devices is of 1/f type near room temperature (f is the frequency). The abrupt changes in the temperature dependence of the noise spectral density and the spectrum itself can be indicative of the phase transition in individual TiS3 nanoribbons as well as modifications in the hopping transport regime. The obtained results attest to the potential of quasi-1D van der Waals materials for applications in printed electronics.
Defects are generally regarded to have negative impact on carrier recombination, charge-transport and ion migration in perovskite materials, which thus lower the efficiency and stability of perovskite optoelectronic devices. Meanwhile, lots of efforts which focused on minimizing defects have greatly promoted the application of perovskite materials. Then, can defects be positive in perovskite optoelectronic devices? Herein, relying on in-depth understanding of defect-associated effects in semiconductors, trapping of photo-generated carriers by defects is applied to enlarge photoconductive gain in perovskite photodetector. The record photoconductive gain, gain-bandwidth product and detection limit were achieved in the photodetector. Exceeding the general concept that defects are harmful, we identify a new view that the defects can be positive in perovskite optoelectronic devices.
The implementation of aberration-corrected electron beam lithography (AC-EBL) in a 200 keV scanning transmission electron microscope (STEM) is a novel technique that could be used for the fabrication of quantum devices based on 2D atomic crystals with single nanometer critical dimensions, allowing to observe more robust quantum effects. In this work we study electron beam sculpturing of nanostructures on suspended graphene field effect transistors using AC-EBL, focusing on the in situ characterization of the impact of electron beam exposure on device electronic transport quality. When AC-EBL is performed on a graphene channel (local exposure) or on the outside vicinity of a graphene channel (non-local exposure), the charge transport characteristics of graphene can be significantly affected due to charge doping and scattering. While the detrimental effect of non-local exposure can be largely removed by vigorous annealing, local-exposure induced damage is irreversible and cannot be fixed by annealing. We discuss the possible causes of the observed exposure effects. Our results provide guidance to the future development of high-energy electron beam lithography for nanomaterial device fabrication.
Luminescent defect-centers in hexagonal boron nitride (hBN) have emerged as a promising 2D-source of single photon emitters (SPEs) due to their high brightness and robust operation at room temperature. The ability to create such emitters with well-defined optical properties is a cornerstone towards their integration into on-chip photonic architectures. Here, we report an effective approach to fabricate hBN single photon emitters (SPEs) with desired emission properties in two isolated spectral regions via the manipulation of boron diffusion through copper during atmospheric pressure chemical vapor deposition (APCVD)--a process we term gettering. Using the gettering technique we deterministically place the resulting zero-phonon line (ZPL) between the regions 550-600 nm or from 600-650 nm, paving the way for hBN SPEs with tailored emission properties across a broad spectral range. Our ability to control defect formation during hBN growth provides a simple and cost-effective means to improve the crystallinity of CVD hBN films, and lower defect density making it applicable to hBN growth for a wide range of applications. Our results are important to understand defect formation of quantum emitters in hBN and deploy them for scalable photonic technologies.