No Arabic abstract
Skyrmions were originally introduced in Particle Physics as a possible mechanism to explain the stability of particles. Lately the concept has been applied in Condensed Matter Physics to describe the newly discovered topologically protected magnetic configurations called the magnetic Skyrmions. This elementary review introduces the concept at a level suitable for beginning students of Physics.
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here Ill supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on New Forms of Matter, Topological Insulators and Superconductors. Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34~T) or hybrid (up to 45~T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observable, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high $T_c$~superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
The order parameter and its variations in space and time in many different states in condensed matter physics at low temperatures are described by the complex function $Psi({bf r}, t)$. These states include superfluids, superconductors, and a subclass of antiferromagnets and charge-density waves. The collective fluctuations in the ordered state may then be categorized as oscillations of phase and amplitude of $Psi({bf r}, t)$. The phase oscillations are the {it Goldstone} modes of the broken continuous symmetry. The amplitude modes, even at long wavelengths, are well defined and decoupled from the phase oscillations only near particle-hole symmetry, where the equations of motion have an effective Lorentz symmetry as in particle physics, and if there are no significant avenues for decay into other excitations. They bear close correspondence with the so-called {it Higgs} modes in particle physics, whose prediction and discovery is very important for the standard model of particle physics. In this review, we discuss the theory and the possible observation of the amplitude or Higgs modes in condensed matter physics -- in superconductors, cold-atoms in periodic lattices, and in uniaxial antiferromagnets. We discuss the necessity for at least approximate particle-hole symmetry as well as the special conditions required to couple to such modes because, being scalars, they do not couple linearly to the usual condensed matter probes.
Circuit QED techniques have been instrumental to manipulate and probe with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices where the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of Mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the Circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments consists in using cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as lattice, spin, orbit, and charge for solids or conformation, electric potentials, and ligands for proteins, has remained challenging. Techniques that allow for distinguishing between different contributions to these processes are hence urgently required. In this paper we demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) as a novel type of nano-probe for tracking transient states of matter. We introduce a sideband-demodulation technique that allows for probing exclusively the stimuli-induced change of near-field optical properties. We exemplify this development by inspecting the decay of an electron-hole plasma generated in SiGe thin films through near-infrared laser pulses. Our approach can universally be applied to optically track ultrafast/-slow processes over the whole spectral range from UV to THz frequencies.