Do you want to publish a course? Click here

Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena

78   0   0.0 ( 0 )
 Added by Audrey Cottet
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Circuit QED techniques have been instrumental to manipulate and probe with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices where the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of Mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the Circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments consists in using cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.



rate research

Read More

132 - Audrey Cottet 2014
This work discusses theoretically the behavior of a microwave cavity and a Cooper pair beam splitter (CPS) coupled non-resonantly. The cavity frequency pull is modified when the CPS is resonant with a microwave excitation. This provides a direct way to probe the coherence of the Cooper pair splitting process. More precisely, the cavity frequency pull displays an anticrossing whose specificities can be attributed unambiguously to coherent Cooper pair injection. This work illustrates that microwave cavities represent a powerful tool to investigate current transport in complex nanocircuits.
119 - Sayantika Bhowal , S. Satpathy , 2020
Skyrmions were originally introduced in Particle Physics as a possible mechanism to explain the stability of particles. Lately the concept has been applied in Condensed Matter Physics to describe the newly discovered topologically protected magnetic configurations called the magnetic Skyrmions. This elementary review introduces the concept at a level suitable for beginning students of Physics.
110 - Frank Wilczek 2016
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here Ill supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on New Forms of Matter, Topological Insulators and Superconductors. Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.
While the application of out-of-plane magnetic fields was, so far, believed to be detrimental for the formation of Majorana phases in artificially engineered hybrid superconducting-semiconducting junctions, several recent theoretical studies have found it indeed useful in establishing such topological phases 1-5. Majorana phases emerge as quantized plateaus in the magnetoconductance of the hybrid junctions based on two-dimensional electron gases (2DEG) under fully out-of-plane magnetic fields. The large transverse Rashba spin-orbit interaction in 2DEG, together with a strong magneto-orbital effect, yield topological phase transitions to nontrivial phases hosting Majorana modes. Such Majorana modes are formed at the ends of 2DEG-based wires with a hybrid superconductor-semiconductor integrity. Here, we report on the experimental observation of such topological phases in Josephson junctions, based on In0.75Ga0.25As 2DEG, by sweeping out-of-plane magnetic fields of as small as 0 < B(mT) < 100 and probing the conductance to highlight the characteristic quantized magnetoconductance plateaus. Our approaches towards (i) creation and detection of topological phases in small out-of-plane magnetic fields, and (ii) integration of an array of topological Josephson junctions on a single chip pave the ways for the development of scalable quantum integrated circuits for their potential applications in fault-tolerant quantum processing and computing.
The superfluidity and pairing phenomena in ultracold atomic Fermi gases have been of great interest in recent years, with multiple tunable parameters. Here we study the BCS-BEC crossover behavior of balanced two-component Fermi gases in a one-dimensional optical lattice, which is distinct from the simple three-dimensional (3D) continuum and a fully 3D lattice often found in a condensed matter system. We use a pairing fluctuation theory which includes self-consistent feedback effects at finite temperatures, and find widespread pseudogap phenomena beyond the BCS regime. As a consequence of the lattice periodicity, the superfluid transition temperature $T_c$ decreases with pairing strength in the BEC regime, where it approaches asymptotically $T_c = pi an/2m$, with $a$ being the $s$-wave scattering length, and $n$ ($m$) the fermion density (mass). In addition, the quasi-two dimensionality leads to fast growing (absolute value of the) fermionic chemical potential $mu$ and pairing gap $Delta$, which depends exponentially on the ratio $d/a$. Importantly, $T_c$ at unitarity increases with the lattice constant $d$ and hopping integral $t$. The effect of the van Hove singularity on $T_c$ is identified. The superfluid density exhibits $T^{3/2}$ power laws at low $T$, away from the extreme BCS limit. These predictions can be tested in future experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا