No Arabic abstract
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for example used for quantum state generation and frequency conversion, their material properties at low temperatures are largely unstudied. Here, we demonstrate the first second harmonic generation in a fiber-coupled lithium niobate waveguide at temperatures down to 4.4K. We observe a reproducible shift in the phase-matched pump wavelength within the telecom band, in addition to transient discontinuities while temperature cycling. Our results establish lithium niobate as a versatile nonlinear photonic integration platform compatible with cryogenic quantum technologies.
Lithium niobate (LN), dubbed by many as the silicon of photonics, has recently risen to the forefront of chip-scale nonlinear optics research since its demonstration as an ultralow-loss integrated photonics platform. Due to its significant quadratic nonlinearity ($chi^{(2)}$), LN inspires many important applications such as second-harmonic generation (SHG), spontaneous parametric down-conversion, and optical parametric oscillation. Here, we demonstrate high-efficiency SHG in dual-resonant, periodically poled z-cut LN microrings, where quasi-phase matching is realized by field-assisted domain engineering. Meanwhile, dual-band operation is accessed by optimizing the coupling conditions in fundamental and second-harmonic bands via a single pulley waveguide. As a result, when pumping a periodically poled LN microring in the low power regime at around 1617nm, an on-chip SHG efficiency of 250,000%/W is achieved, a state-of-the-art value reported among current integrated photonics platforms. An absolute conversion efficiency of 15% is recorded with a low pump power of 115$mu$W in the waveguide. Such periodically poled LN microrings also present a versatile platform for other cavity-enhanced quasi-phase matched $chi^{(2)}$ nonlinear optical processes.
Optical waveguides made from periodically poled materials provide high confinement of light and enable the generation of new wavelengths via quasi-phase-matching, making them a key platform for nonlinear optics and photonics. However, such devices are not typically employed for high-harmonic generation. Here, using 200-fs, 10-nJ-level pulses of 4100 nm light at 1 MHz, we generate high harmonics up to the 13th harmonic (315 nm) in a chirped, periodically poled lithium niobate (PPLN) waveguide. Total conversion efficiencies into the visible--ultraviolet region are as high as 10 percent. We find that the output spectrum depends on the waveguide poling period, indicating that quasi-phase-matching plays a significant role. In the future, such periodically poled waveguides may enable compact sources of ultrashort pulses at high repetition rates and provide new methods of probing the electronic structure of solid-state materials.
We observe second harmonic generation via random quasi-phase-matching in a 2.0 mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.
The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically-poled thin film lithium niobate microring resonator (PPLNMR) that reaches 5,000,000%/W second harmonic conversion efficiency---almost 20-fold enhancement over the state-of-the-art---by accessing its largest $chi^{(2)}$ tensor component $d_{33}$ via quasi-phase matching. The corresponding single photon coupling rate $g/2pi$ is estimated to be 1.2 MHz, which is an important milestone as it approaches the dissipation rate $kappa/2pi$ of best available lithium niobate microresonators developed in the community. Using a figure of merit defined as $g/kappa$, our devices reach a single photon nonlinearity approaching 1%. We show that, by further scaling of the device, it is possible to improve the single photon nonlinearity to a regime where photon-blockade effect can be manifested.
In this paper, we address the issue of the generation of non-degenerate cross-polarization-entangled photon pairs using type-II periodically poled lithium niobate. We show that, by an appropriate engineering of the quasi-phase-matching grating, it is possible to simultaneously satisfy the conditions for two spontaneous parametric down-conversion processes, namely ordinary pump photon down-conversion to either extraordinary signal and ordinary idler paired photons, or to ordinary signal and extraordinary idler paired photons. In contrast to single type-II phase-matching, these two processes, when enabled together, can lead to the direct production of cross-polarization-entangled state for non degenerate signal and idler wavelengths. Such a scheme should be of great interest in applications requiring polarization-entangled non degenerate paired photons with, for instance, one of the entangled photons at an appropriate wavelength being used for local operation or for quantum storage in an atomic ensemble, and the other one at the typical wavelength of 1550 nm for propagation through an optical fiber.