Do you want to publish a course? Click here

Trapping electrons in a room-temperature microwave Paul trap

66   0   0.0 ( 0 )
 Added by Clemens Matthiesen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate trapping of electrons in a millimeter-sized quadrupole Paul trap driven at 1.6~GHz in a room-temperature ultra-high vacuum setup. Cold electrons are introduced into the trap by ionization of atomic calcium via Rydberg states and stay confined by microwave and static electric fields for several tens of milliseconds. A fraction of these electrons remain trapped longer and show no measurable loss for measurement times up to a second. Electronic excitation of the motion reveals secular frequencies which can be tuned over a range of several tens to hundreds of MHz. Operating a similar electron Paul trap in a cryogenic environment may provide a platform for all-electric quantum computing with trapped electron spin qubits.



rate research

Read More

90 - Ye Wang , Mu Qiao , Zhengyang Cai 2019
We present a simple Paul trap that stably accommodates up to a couple of dozens of ensuremath{^{171}mathrm{Yb}^+~} ions in a stationary two-dimensional lattice. The trap is constructed on a single plate of gold-plated laser-machined alumina and can produce a pancake-like pseudo-potential that makes ions form a self-assembly two-dimensional crystal which locates on the plane composed of axial and one of the transverse axes with around 5 $mu$m spacing. We use Raman laser beams to coherently manipulate these ion-qubits where the net propagation direction is perpendicular to the plane of the crystal and micromotion. We perform the coherent operations and study the spectrum of vibrational modes through globally addressed Raman laser-beams on a dozen of ions in the two-dimensional crystal. We measure the amplitude of micro-motion by comparing the strengths of carrier and micro-motion sideband transitions with three ions, where the micro-motion amplitude is similar to that of a single ion. The spacings of ions are small enough for large coupling strengths, which is a favorable condition for two-dimensional quantum simulation.
177 - A. Hashemloo , C. M. Dion 2015
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical, the other where the center-of-mass motion is treated classically while rotational motion is quantized. We study the rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion, and that it departs from the Mathieu equation solution found for atomic ions. For the case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.
We present the design and construction of a new experimental apparatus for the trapping of single Ba$^+$ ions in the center of curvature of an optical-quality hemispherical mirror. We describe the layout, fabrication and integration of the full setup, consisting of a high-optical access monolithic `3D-printed Paul trap, the hemispherical mirror, a diffraction-limited in-vacuum lens (NA = 0.7) for collection of atomic fluorescence and a state-of-the art ultra-high vacuum vessel. This new apparatus enables the study of quantum electrodynamics effects such as strong inhibition and enhancement of spontaneous emission, and achieves a collection efficiency of the emitted light in a single optical mode of 31%.
We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double-well, thereby generating two separated output beams with $5,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3,$eV, in excellent agreement with particle tracking simulations. We discuss prospects of this novel beam splitter approach for electron-based quantum matter-wave optics experiments.
We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, while a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5% level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01% level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large two-dimensional trap array.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا