No Arabic abstract
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical, the other where the center-of-mass motion is treated classically while rotational motion is quantized. We study the rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion, and that it departs from the Mathieu equation solution found for atomic ions. For the case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.
Using numerical simulations of the time-dependent Schrodinger equation, we study the full quantum dynamics of the motion of an atomic ion in a linear Paul trap. Such a trap is based on a time-varying, periodic electric field, and hence corresponds to a time-dependent potential for the ion, which we model exactly. We compare the center of mass motion with that obtained from classical equations of motion, as well as to results based on a time-independent effective potential. We also study the oscillations of the width of the ions wave packet, including close to the border between stable (bounded) and unstable (unbounded) trajectories. Our results confirm that the center-of-mass motion always follow the classical trajectory, that the width of the wave packet is bounded for trapping within the stability region, and therefore that the classical trapping criterion are fully applicable to quantum motion.
We study the quantum stability of the dynamics of ions in a Paul trap. We revisit the results of Wang et al. [Phys. Rev. A 52, 1419 (1995)], which showed that quantum trajectories did not have the same region of stability as their classical counterpart, contrary to what is obtained from a Floquet analysis of the motion in the periodic trapping field. Using numerical simulations of the full wave-packet dynamics, we confirm that the classical trapping criterion are fully applicable to quantum motion, when considering both the expectation value of the position of the wave packet and its width.
We demonstrate trapping of electrons in a millimeter-sized quadrupole Paul trap driven at 1.6~GHz in a room-temperature ultra-high vacuum setup. Cold electrons are introduced into the trap by ionization of atomic calcium via Rydberg states and stay confined by microwave and static electric fields for several tens of milliseconds. A fraction of these electrons remain trapped longer and show no measurable loss for measurement times up to a second. Electronic excitation of the motion reveals secular frequencies which can be tuned over a range of several tens to hundreds of MHz. Operating a similar electron Paul trap in a cryogenic environment may provide a platform for all-electric quantum computing with trapped electron spin qubits.
In this paper, direct observation of micromotion for multiple ions in a laser-cooled trapped ion crystal is discussed along with a novel measurement technique for micromotion amplitude. Micromotion is directly observed using a time-resolving, single-photon sensitive camera that provides both fluorescence and position data for each ion on the nanosecond time scale. Micromotion amplitude and phase for each ion in the crystal are measured, allowing this method to be sensitive to tilts and shifts of the ion chain from the null of the radiofrequency quadrupole potential in the linear trap. Spatial resolution makes this micromotion detection technique suitable for complex ion configurations, including two-dimensional geometries. It does not require any additional equipment or laser beams, and the modulation of the cooling lasers or trap voltages is not necessary for detection, as it is in other methods.
We present a simple Paul trap that stably accommodates up to a couple of dozens of ensuremath{^{171}mathrm{Yb}^+~} ions in a stationary two-dimensional lattice. The trap is constructed on a single plate of gold-plated laser-machined alumina and can produce a pancake-like pseudo-potential that makes ions form a self-assembly two-dimensional crystal which locates on the plane composed of axial and one of the transverse axes with around 5 $mu$m spacing. We use Raman laser beams to coherently manipulate these ion-qubits where the net propagation direction is perpendicular to the plane of the crystal and micromotion. We perform the coherent operations and study the spectrum of vibrational modes through globally addressed Raman laser-beams on a dozen of ions in the two-dimensional crystal. We measure the amplitude of micro-motion by comparing the strengths of carrier and micro-motion sideband transitions with three ions, where the micro-motion amplitude is similar to that of a single ion. The spacings of ions are small enough for large coupling strengths, which is a favorable condition for two-dimensional quantum simulation.