No Arabic abstract
We present the design and construction of a new experimental apparatus for the trapping of single Ba$^+$ ions in the center of curvature of an optical-quality hemispherical mirror. We describe the layout, fabrication and integration of the full setup, consisting of a high-optical access monolithic `3D-printed Paul trap, the hemispherical mirror, a diffraction-limited in-vacuum lens (NA = 0.7) for collection of atomic fluorescence and a state-of-the art ultra-high vacuum vessel. This new apparatus enables the study of quantum electrodynamics effects such as strong inhibition and enhancement of spontaneous emission, and achieves a collection efficiency of the emitted light in a single optical mode of 31%.
We demonstrate trapping of electrons in a millimeter-sized quadrupole Paul trap driven at 1.6~GHz in a room-temperature ultra-high vacuum setup. Cold electrons are introduced into the trap by ionization of atomic calcium via Rydberg states and stay confined by microwave and static electric fields for several tens of milliseconds. A fraction of these electrons remain trapped longer and show no measurable loss for measurement times up to a second. Electronic excitation of the motion reveals secular frequencies which can be tuned over a range of several tens to hundreds of MHz. Operating a similar electron Paul trap in a cryogenic environment may provide a platform for all-electric quantum computing with trapped electron spin qubits.
We study the quantum stability of the dynamics of ions in a Paul trap. We revisit the results of Wang et al. [Phys. Rev. A 52, 1419 (1995)], which showed that quantum trajectories did not have the same region of stability as their classical counterpart, contrary to what is obtained from a Floquet analysis of the motion in the periodic trapping field. Using numerical simulations of the full wave-packet dynamics, we confirm that the classical trapping criterion are fully applicable to quantum motion, when considering both the expectation value of the position of the wave packet and its width.
We present a simple Paul trap that stably accommodates up to a couple of dozens of ensuremath{^{171}mathrm{Yb}^+~} ions in a stationary two-dimensional lattice. The trap is constructed on a single plate of gold-plated laser-machined alumina and can produce a pancake-like pseudo-potential that makes ions form a self-assembly two-dimensional crystal which locates on the plane composed of axial and one of the transverse axes with around 5 $mu$m spacing. We use Raman laser beams to coherently manipulate these ion-qubits where the net propagation direction is perpendicular to the plane of the crystal and micromotion. We perform the coherent operations and study the spectrum of vibrational modes through globally addressed Raman laser-beams on a dozen of ions in the two-dimensional crystal. We measure the amplitude of micro-motion by comparing the strengths of carrier and micro-motion sideband transitions with three ions, where the micro-motion amplitude is similar to that of a single ion. The spacings of ions are small enough for large coupling strengths, which is a favorable condition for two-dimensional quantum simulation.
The LPCTrap experiment uses an open Paul trap which was built to enable precision measurements in the beta decay of radioactive ions. The initial goal was the precise measurement of the beta-neutrino angular correlation coefficient in the decay of 6He. Its geometry results from a careful optimization of the harmonic potential created by cylindrical electrodes. It supersedes previously considered geometries that presented a smaller detection solid angle to the beta particle and the recoiling ion. We describe here the methods which were used for the potential optimization, and we present the measured performances in terms of trapping time, cloud size and temperature, and space charge related limits. The properties of the ion cloud at equilibrium are well reproduced by a simple numerical simulation using hard sphere collisions, which additionally gives insights on the trapping loss mechanism. The interpretation for the observed trapping liftetimes is further corroborated by a model recently developed for ion clouds in Paul traps. The open trap shall serve other projects. It is currently used for commissioning purpose in the TRAPSENSOR experiment and is also considered in tests of the Standard Model involving the beta decay of polarized $^{23}$Mg and $^{39}$Ca ion in the frame of the MORA experiment. The latter tests require in-trap polarization of the ions and further optimization of the trapping and detection setup. Based on the results of the simulations and of their interpretations given by the model, different improvements of the trapping setup are discussed.
A novel approach to optics integration in ion traps is demonstrated based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror. Additional optical losses due to fabrication are found to be as low as 80 ppm for light at 422 nm. The integrated mirror is used to demonstrate light collection from, and imaging of, a single 88 Sr+ ion trapped $169pm4 mu$m above the mirror.