No Arabic abstract
Globular cluster progenitors may have been detected by textit{HST}, and are predicted to be observable with textit{JWST} and ground-based extremely-large telescopes with adaptive optics. This has the potential to elucidate the issue of globular cluster formation and the origins of significantly helium-enriched subpopulations, a problem in Galactic astronomy with no satisfactory theoretical solution. Given this context, we use model stellar tracks and isochrones to investigate the predicted observational properties of helium-enriched stellar populations in globular cluster progenitors. We find that, relative to helium-normal populations, helium-enriched (${Delta}Y=+0.12$) stellar populations similar to those inferred in the most massive globular clusters, are expected, modulo some rapid fluctuations in the first $sim$30 Myr, to be brighter and redder in the rest frame. At fixed age, stellar mass, and metallicity, a helium-enriched population is predicted to converge to being $sim$0.40 mag brighter at $lambda approx 2.0, {mu}m$, and to be 0.30 mag redder in the textit{JWST}-NIRCam colour $(F070W-F200W)$, and to actually be fainter for $lambda lesssim 0.50 , {mu}m$. Separately, we find that the time-integrated shift in ionizing radiation is a negligible $sim 5%$, though we show that the Lyman-$alpha$ escape fraction could end up higher for helium-enriched stars.
Multiple populations in globular clusters are usually explained by the formation of stars out of material with a chemical composition that is polluted to different degrees by the ejecta of short-lived, massive stars of various type. Among other things, these polluters differ by the amount of helium they spread in the surrounding medium. In this study we investigate whether the present-day photometric method used to infer the helium content of multiple populations indeed gives the true value or underestimates it by missing very He-rich, but rare stars. We focus on the specific case of NGC6752. We compute atmosphere models and synthetic spectra along isochrones produced for this cluster for a very broad range of He abundances covering the predictions of different pollution scenarios, including the extreme case of the fast-rotating massive star (FRMS) scenario. We calculate synthetic photometry in HST filters best suited to study the helium content. We subsequently build synthetic clusters with various distributions of stars. We finally determine the maximum helium mass fraction of these synthetic clusters using a method similar to that applied to observational data. We build toy models of clusters with various distributions of multiple populations and ensure that we are able to recover the input maximum Y. We then build synthetic clusters with the populations predicted by the FRMS scenario and find that while we slightly underestimate the maximum Y value, we are still able to detect stars much more He-rich than the current observed maximum Y. It is easier to determine the maximum Y on main sequence stars than on red giant branch stars, but qualitatively the results are unaffected by the sample choice. We show that in NGC6752 it is unlikely that stars more He-rich than the current observational limit of about 0.3 are present.
The Lya emission has been observed from galaxies over a redshift span z ~ 0 - 8.6. However, the evolution of high-redshift Lya emitters (LAEs), and the link between these populations and local galaxies, remain poorly understood. Here, we investigate the Lya properties of progenitors of a local L* galaxy by combining cosmological hydrodynamic simulations with three-dimensional radiative transfer calculations using the new ART^2 code. We find that the main progenitor (the most massive one) of a Milky Way-like galaxy has a number of Lya properties close to those of observed LAEs at z ~ 2 - 6, but most of the fainter ones appear to fall below the detection limits of current surveys. The Lya photon escape fraction depends sensitively on a number of physical properties of the galaxy, such as mass, star formation rate, and metallicity, as well as galaxy morphology and orientation. Moreover, we find that high-redshift LAEs show blue-shifted Lya line profiles characteristic of gas inflow, and that the Lya emission by excitation cooling increases with redshift, and becomes dominant at z > 6. Our results suggest that some observed LAEs at z ~ 2-6 with luminosity of L_Lya ~ 10^{42-43} ergs/s may be similar to the main progenitor of the Milky Way at high redshift, and that they may evolve into present-day L* galaxies.
It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium-enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of > 0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the clusters blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.
The old, solar metallicity open cluster Messier 67 has long been considered a lynchpin in the study and understanding of the structure and evolution of solar-type stars. The same is arguably true for stellar remnants - the white dwarf population of M67 provides crucial observational data for understanding and interpreting white dwarf populations and evolution. In this work, we determine the white dwarf masses and derive their progenitor star masses using high signal-to-noise spectroscopy of warm ($gtrsim10,000$ K) DA white dwarfs in the cluster. From this we are able to derive each white dwarfs position on the initial-final mass relation, with an average $M_{mathrm WD} = 0.60pm 0.01 M_{odot}$ and progenitor mass $M_i = 1.52pm 0.04 M_{odot}$. These values are fully consistent with recently published linear and piecewise linear fits to the semi-empirical initial-final mass relation and provide a crucial, precise anchor point for the initial-final mass relation for solar-metallicity, low-mass stars. The mean mass of M67 white dwarfs is also consistent with the sharp narrow peak in the local field white dwarf mass distribution, indicating that a majority of recently-formed field white dwarfs come from stars with progenitor masses of $approx 1.5 M_{odot}$. Our results enable more precise modeling of the Galactic star formation rate encoded in the field WD mass distribution.
Globular clusters contain multiple stellar populations with peculiar chemical compositions. Pollution of the intracluster gas by an early population of fast-evolving stars is the most common scenario for explaining the observations. Stars with masses in excess of 1000 Msun have recently been suggested as potential polluters. We investigate the spectral properties of proto-GCs that would host a supermassive star. Our main goal is to quantify how such a star would affect the integrated light of the cluster, and to study the detectability of such objects. We computed non-LTE atmosphere models for SMS with various combinations of stellar parameters (luminosity, effective temperature, and mass) and metallicities appropriate for GCs, and we predict their emergent spectra. Using these spectra, we calculated the total emission of young proto-GCs with SMS as predicted in a previously reported scenario, and we computed synthetic photometry in UV, optical, and near-IR bands, in particular for the JWST. At an effective temperature of 10000 K, the spectrum of SMSs shows a Balmer break in emission. This feature is due to strong non-LTE effects (implied by the high luminosity) and is not observed in normal stars. The hydrogen lines also show a peculiar behavior, with Balmer lines in emission while higher series lines are in absorption. At 7000 K, the Balmer break shows a strong absorption. At high effective temperatures, the Lyman break is found in emission. Cool and luminous SMSs are found to dominate the integrated spectrum of the cluster, except for the UV range. The predicted magnitudes of these proto-GCs are m_AB~28-30 between 0.7 and 8 um and for redshifts z~4-10, which is detectable with the JWST. The peculiar observational features of cool SMSs imply that they might in principle be detected in color-color diagrams that probe the spectral energy distribution below and above the Balmer break.