No Arabic abstract
The old, solar metallicity open cluster Messier 67 has long been considered a lynchpin in the study and understanding of the structure and evolution of solar-type stars. The same is arguably true for stellar remnants - the white dwarf population of M67 provides crucial observational data for understanding and interpreting white dwarf populations and evolution. In this work, we determine the white dwarf masses and derive their progenitor star masses using high signal-to-noise spectroscopy of warm ($gtrsim10,000$ K) DA white dwarfs in the cluster. From this we are able to derive each white dwarfs position on the initial-final mass relation, with an average $M_{mathrm WD} = 0.60pm 0.01 M_{odot}$ and progenitor mass $M_i = 1.52pm 0.04 M_{odot}$. These values are fully consistent with recently published linear and piecewise linear fits to the semi-empirical initial-final mass relation and provide a crucial, precise anchor point for the initial-final mass relation for solar-metallicity, low-mass stars. The mean mass of M67 white dwarfs is also consistent with the sharp narrow peak in the local field white dwarf mass distribution, indicating that a majority of recently-formed field white dwarfs come from stars with progenitor masses of $approx 1.5 M_{odot}$. Our results enable more precise modeling of the Galactic star formation rate encoded in the field WD mass distribution.
White dwarfs are excellent forensic tools for studying end-of-life issues surrounding low- and intermediate-mass stars, and the old, solar-metallicity open star cluster Messier 67 is a proven laboratory for the study of stellar evolution for solar-type stars. In this paper, we present a detailed spectroscopic study of brighter (M_g < 12.4) white dwarfs in Messier 67, and, in combination with previously-published proper motion membership determinations, we identify a clean, representative sample of cluster white dwarfs, including 13 members with hydrogen-dominated atmospheres, at least one of which is a candidate double degenerate, and 5 members with helium-dominated atmospheres. Using this sample we test multiple predictions surrounding the final stages of stellar evolution in solar type stars. In particular, the stochasticity of the integrated mass lost by ~1.5 solar mass stars is less than 7% of the white dwarf remnant mass. We identify white dwarfs likely resulting from binary evolution, including at least one blue straggler remnant and two helium core white dwarfs. We observe no evidence of a significant population of helium core white dwarfs formed by enhanced mass loss on the red giant branch of the cluster. The distribution of white dwarf atmospheric compositions is fully consistent with that in the field, limiting proposed mechanisms for the suppression of helium atmosphere white dwarf formation in star clusters. In short, the white dwarf population of Messier 67 is fully consistent with basic predictions of single- and multiple-star stellar evolution theories for solar metallicity stars.
Because of the large neutron excess of $^{22}$Ne, this isotope rapidly sediments in the interior of the white dwarfs. This process releases an additional amount of energy, thus delaying the cooling times of the white dwarf. This influences the ages of different stellar populations derived using white dwarf cosmochronology. Furthermore, the overabundance of $^{22}$Ne in the inner regions of the star, modifies the Brunt-Vaisala frequency, thus altering the pulsational properties of these stars. In this work, we discuss the impact of $^{22}$Ne sedimentation in white dwarfs resulting from Solar metallicity progenitors ($Z=0.02$). We performed evolutionary calculations of white dwarfs of masses $0.528$, $0.576$, $0.657$ and $0.833$ M$_{sun}$, derived from full evolutionary computations of their progenitor stars, starting at the Zero Age Main Sequence all the way through central hydrogen and helium burning, thermally-pulsing AGB and post-AGB phases. Our computations show that at low luminosities ($log(L/L_{sun})la -4.25$), $^{22}$Ne sedimentation delays the cooling of white dwarfs with Solar metallicity progenitors by about 1~Gyr. Additionally, we studied the consequences of $^{22}$Ne sedimentation on the pulsational properties of ZZ~Ceti white dwarfs. We find that $^{22}$Ne sedimentation induces differences in the periods of these stars larger than the present observational uncertainties, particularly in more massive white dwarfs.
According to the fossil-field hypothesis magnetic fields are remnants of the previous stages of evolution. However, population synthesis calculations are unable to reproduce the magnetic white dwarf (MWD) sample without binary interaction or inclusion of a population of progenitor with unobservable small-scale fields. One necessary ingredient in population synthesis is the initial-to-final-mass relation (IFMR) which describes the mass-loss processes during the stellar evolution. When white dwarfs are members of open clusters, their evolutionary histories can be assessed through the use of cluster properties. In this work, we assess the cluster membership by correlating the proper-motion of MWDs with the cluster proper-motion and by analyzing the candidates spectroscopically with our magnetic model spectra in order to estimate the effective temperature and radii. We identified SDSS J085523.87+164059.0 to be a proper-motion member of Praesepe. We also included the data of the formerly identified cluster members NGC 6819-8, WD 0836+201 and estimated the mass, cooling age and the progenitor masses of the three probable MWD members of open clusters. According to our analysis, the newly identified cluster member SDSS J085523.87+164059.0 is an ultra-massive MWD of mass 1.12 $pm$ 0.11 Msolar. We increase the sample of MWDs with known progenitor masses to ten, with the rest of the data coming from the common proper motion binaries. Our investigations show that, when effects of the magnetic fields are included in the diagnostics, the estimated properties of these cluster MWDs do not show evidence for deviations from the IFMR. Furthermore, we estimate the precision of the magnetic diagnostics which would be necessary to determine quantitatively whether magnetism has any effect on the mass-loss.
We present time-resolved spectroscopic and polarimetric observations of the AM Her system EU Cnc. EU Cnc is located near the core of the old open cluster Messier 67; new proper motion measurements indicate that EU Cnc is indeed a member of the star cluster, this system therefore is useful to constrain the formation and evolution of magnetic cataclysmic variables. The spectra exhibit two-component emission features with independent radial velocity variations as well as time-variable cyclotron emission indicating a magnetic field strength of 41 MG. The period of the radial velocity and cyclotron hump variations are consistent with the previously-known photometric period, and the spectroscopic flux variations are consistent in amplitude with previous photometric amplitude measurements. The secondary star is also detected in the spectrum. We also present polarimetric imaging measurements of EU Cnc that show a clear detection of polarization, and the degree of polarization drops below our detection threshold at phases when the cyclotron emission features are fading or not evident. The combined data are all consistent with the interpretation that EU Cnc is a low-state polar in the cluster Messier 67. The mass function of the system gives an estimate of the accretor mass of M_WD >= 0.68 M_sun with M_WD ~ 0.83 M_sun for an average inclination. We are thus able to place a lower limit on the progenitor mass of the accreting WD of >= 1.43 M_sun.
We investigated the prospects for systematic searches of white dwarfs at low Galactic latitudes, using the VLT Survey Telescope (VST) H$alpha$ Photometric Survey of the Galactic plane and Bulge (VPHAS+). We targeted 17 white dwarf candidates along sightlines of known open clusters, aiming to identify potential cluster members. We confirmed all the 17 white dwarf candidates from blue/optical spectroscopy, and we suggest five of them to be likely cluster members. We estimated progenitor ages and masses for the candidate cluster members, and compared our findings to those for other cluster white dwarfs. A white dwarf in NGC 3532 is the most massive known cluster member (1.13 M$_{odot}$), likely with an oxygen-neon core, for which we estimate an $8.8_{-4.3}^{+1.2}$ M$_{odot}$ progenitor, close to the mass-divide between white dwarf and neutron star progenitors. A cluster member in Ruprecht 131 is a magnetic white dwarf, whose progenitor mass exceeded 2-3 M$_{odot}$. We stress that wider searches, and improved cluster distances and ages derived from data of the ESA Gaia mission, will advance the understanding of the mass-loss processes for low- to intermediate-mass stars.