Do you want to publish a course? Click here

End-to-end Semantics-based Summary Quality Assessment for Single-document Summarization

112   0   0.0 ( 0 )
 Added by Forrest Bao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Canonical automatic summary evaluation metrics, such as ROUGE, suffer from two drawbacks. First, semantic similarity and linguistic quality are not captured well. Second, a reference summary, which is expensive or impossible to obtain in many cases, is needed. Existing efforts to address the two drawbacks are done separately and have limitations. To holistically address them, we introduce an end-to-end approach for summary quality assessment by leveraging sentence or document embedding and introducing two negative sampling approaches to create training data for this supervised approach. The proposed approach exhibits promising results on several summarization datasets of various domains including news, legislative bills, scientific papers, and patents. When rating machine-generated summaries in TAC2010, our approach outperforms ROUGE in terms of linguistic quality, and achieves a correlation coefficient of up to 0.5702 with human evaluations in terms of modified pyramid scores. We hope our approach can facilitate summarization research or applications when reference summaries are infeasible or costly to obtain, or when linguistic quality is a focus.



rate research

Read More

End-to-end (E2E) systems have achieved competitive results compared to conventional hybrid hidden Markov model (HMM)-deep neural network based automatic speech recognition (ASR) systems. Such E2E systems are attractive due to the lack of dependence on alignments between input acoustic and output grapheme or HMM state sequence during training. This paper explores the design of an ASR-free end-to-end system for text query-based keyword search (KWS) from speech trained with minimal supervision. Our E2E KWS system consists of three sub-systems. The first sub-system is a recurrent neural network (RNN)-based acoustic auto-encoder trained to reconstruct the audio through a finite-dimensional representation. The second sub-system is a character-level RNN language model using embeddings learned from a convolutional neural network. Since the acoustic and text query embeddings occupy different representation spaces, they are input to a third feed-forward neural network that predicts whether the query occurs in the acoustic utterance or not. This E2E ASR-free KWS system performs respectably despite lacking a conventional ASR system and trains much faster.
Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a golden reference considerably restricts the practicality of such assessment tools in real-world scenarios since the clean reference usually cannot be accessed. On the other hand, human beings can readily evaluate the speech quality without any reference (e.g., mean opinion score (MOS) tests), implying the existence of an objective and non-intrusive (no clean reference needed) quality assessment mechanism. In this study, we propose a novel end-to-end, non-intrusive speech quality evaluation model, termed Quality-Net, based on bidirectional long short-term memory. The evaluation of utterance-level quality in Quality-Net is based on the frame-level assessment. Frame constraints and sensible initializations of forget gate biases are applied to learn meaningful frame-level quality assessment from the utterance-level quality label. Experimental results show that Quality-Net can yield high correlation to PESQ (0.9 for the noisy speech and 0.84 for the speech processed by speech enhancement). We believe that Quality-Net has potential to be used in a wide variety of applications of speech signal processing.
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modelling, language modelling and sequence decoding. We investigate a more direct approach in which the HMM is replaced with a Recurrent Neural Network (RNN) that performs sequence prediction directly at the character level. Alignment between the input features and the desired character sequence is learned automatically by an attention mechanism built into the RNN. For each predicted character, the attention mechanism scans the input sequence and chooses relevant frames. We propose two methods to speed up this operation: limiting the scan to a subset of most promising frames and pooling over time the information contained in neighboring frames, thereby reducing source sequence length. Integrating an n-gram language model into the decoding process yields recognition accuracies similar to other HMM-free RNN-based approaches.
We suggest a new idea of Editorial Network - a mixed extractive-abstractive summarization approach, which is applied as a post-processing step over a given sequence of extracted sentences. Our network tries to imitate the decision process of a human editor during summarization. Within such a process, each extracted sentence may be either kept untouched, rephrased or completely rejected. We further suggest an effective way for training the editor based on a novel soft-labeling approach. Using the CNN/DailyMail dataset we demonstrate the effectiveness of our approach compared to state-of-the-art extractive-only or abstractive-only baseline methods.
This paper considers the reading comprehension task in which multiple documents are given as input. Prior work has shown that a pipeline of retriever, reader, and reranker can improve the overall performance. However, the pipeline system is inefficient since the input is re-encoded within each module, and is unable to leverage upstream components to help downstream training. In this work, we present RE$^3$QA, a unified question answering model that combines context retrieving, reading comprehension, and answer reranking to predict the final answer. Unlike previous pipelined approaches, RE$^3$QA shares contextualized text representation across different components, and is carefully designed to use high-quality upstream outputs (e.g., retrieved context or candidate answers) for directly supervising downstream modules (e.g., the reader or the reranker). As a result, the whole network can be trained end-to-end to avoid the context inconsistency problem. Experiments show that our model outperforms the pipelined baseline and achieves state-of-the-art results on t

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا