No Arabic abstract
This paper considers the reading comprehension task in which multiple documents are given as input. Prior work has shown that a pipeline of retriever, reader, and reranker can improve the overall performance. However, the pipeline system is inefficient since the input is re-encoded within each module, and is unable to leverage upstream components to help downstream training. In this work, we present RE$^3$QA, a unified question answering model that combines context retrieving, reading comprehension, and answer reranking to predict the final answer. Unlike previous pipelined approaches, RE$^3$QA shares contextualized text representation across different components, and is carefully designed to use high-quality upstream outputs (e.g., retrieved context or candidate answers) for directly supervising downstream modules (e.g., the reader or the reranker). As a result, the whole network can be trained end-to-end to avoid the context inconsistency problem. Experiments show that our model outperforms the pipelined baseline and achieves state-of-the-art results on t
This study considers the task of machine reading at scale (MRS) wherein, given a question, a system first performs the information retrieval (IR) task of finding relevant passages in a knowledge source and then carries out the reading comprehension (RC) task of extracting an answer span from the passages. Previous MRS studies, in which the IR component was trained without considering answer spans, struggled to accurately find a small number of relevant passages from a large set of passages. In this paper, we propose a simple and effective approach that incorporates the IR and RC tasks by using supervised multi-task learning in order that the IR component can be trained by considering answer spans. Experimental results on the standard benchmark, answering SQuAD questions using the full Wikipedia as the knowledge source, showed that our model achieved state-of-the-art performance. Moreover, we thoroughly evaluated the individual contributions of our model components with our new Japanese dataset and SQuAD. The results showed significant improvements in the IR task and provided a new perspective on IR for RC: it is effective to teach which part of the passage answers the question rather than to give only a relevance score to the whole passage.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
Document-level discourse parsing, in accordance with the Rhetorical Structure Theory (RST), remains notoriously challenging. Challenges include the deep structure of document-level discourse trees, the requirement of subtle semantic judgments, and the lack of large-scale training corpora. To address such challenges, we propose to exploit robust representations derived from multiple levels of granularity across syntax and semantics, and in turn incorporate such representations in an end-to-end encoder-decoder neural architecture for more resourceful discourse processing. In particular, we first use a pre-trained contextual language model that embodies high-order and long-range dependency to enable finer-grain semantic, syntactic, and organizational representations. We further encode such representations with boundary and hierarchical information to obtain more refined modeling for document-level discourse processing. Experimental results show that our parser achieves the state-of-the-art performance, approaching human-level performance on the benchmarked RST dataset.
Since real-world ubiquitous documents (e.g., invoices, tickets, resumes and leaflets) contain rich information, automatic document image understanding has become a hot topic. Most existing works decouple the problem into two separate tasks, (1) text reading for detecting and recognizing texts in images and (2) information extraction for analyzing and extracting key elements from previously extracted plain text. However, they mainly focus on improving information extraction task, while neglecting the fact that text reading and information extraction are mutually correlated. In this paper, we propose a unified end-to-end text reading and information extraction network, where the two tasks can reinforce each other. Specifically, the multimodal visual and textual features of text reading are fused for information extraction and in turn, the semantics in information extraction contribute to the optimization of text reading. On three real-world datasets with diverse document images (from fixed layout to variable layout, from structured text to semi-structured text), our proposed method significantly outperforms the state-of-the-art methods in both efficiency and accuracy.
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a machine reads and comprehends texts in the image to answer the question in natural language. Compared with existing visual question answering (VQA) datasets that contain texts in images, VisualMRC focuses more on developing natural language understanding and generation abilities. It contains 30,000+ pairs of a question and an abstractive answer for 10,000+ document images sourced from multiple domains of webpages. We also introduce a new model that extends existing sequence-to-sequence models, pre-trained with large-scale text corpora, to take into account the visual layout and content of documents. Experiments with VisualMRC show that this model outperformed the base sequence-to-sequence models and a state-of-the-art VQA model. However, its performance is still below that of humans on most automatic evaluation metrics. The dataset will facilitate research aimed at connecting vision and language understanding.