No Arabic abstract
Binary Neural Networks (BNNs), known to be one among the effectively compact network architectures, have achieved great outcomes in the visual tasks. Designing efficient binary architectures is not trivial due to the binary nature of the network. In this paper, we propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet, a compact network with separable depth-wise convolution. Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs), assuming an approximately optimal trade-off between computational cost and model accuracy. Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution while optimizing the model performance in terms of complexity and latency. The approach is threefold. First, we train strong baseline binary networks with a wide range of random group combinations at each convolutional layer. This set-up gives the binary neural networks a capability of preserving essential information through layers. Second, to find a good set of hyperparameters for group convolutions we make use of the evolutionary search which leverages the exploration of efficient 1-bit models. Lastly, these binary models are trained from scratch in a usual manner to achieve the final binary model. Various experiments on ImageNet are conducted to show that following our construction guideline, the final model achieves 60.09% Top-1 accuracy and outperforms the state-of-the-art CI-BCNN with the same computational cost.
We present Mobile-Former, a parallel design of MobileNet and Transformer with a two-way bridge in between. This structure leverages the advantage of MobileNet at local processing and transformer at global interaction. And the bridge enables bidirectional fusion of local and global features. Different with recent works on vision transformer, the transformer in Mobile-Former contains very few tokens (e.g. less than 6 tokens) that are randomly initialized, resulting in low computational cost. Combining with the proposed light-weight cross attention to model the bridge, Mobile-Former is not only computationally efficient, but also has more representation power, outperforming MobileNetV3 at low FLOP regime from 25M to 500M FLOPs on ImageNet classification. For instance, it achieves 77.9% top-1 accuracy at 294M FLOPs, gaining 1.3% over MobileNetV3 but saving 17% of computations. When transferring to object detection, Mobile-Former outperforms MobileNetV3 by 8.6 AP.
Learning to represent videos is a very challenging task both algorithmically and computationally. Standard video CNN architectures have been designed by directly extending architectures devised for image understanding to include the time dimension, using modules such as 3D convolutions, or by using two-stream design to capture both appearance and motion in videos. We interpret a video CNN as a collection of multi-stream convolutional blocks connected to each other, and propose the approach of automatically finding neural architectures with better connectivity and spatio-temporal interactions for video understanding. This is done by evolving a population of overly-connected architectures guided by connection weight learning. Architectures combining representations that abstract different input types (i.e., RGB and optical flow) at multiple temporal resolutions are searched for, allowing different types or sources of information to interact with each other. Our method, referred to as AssembleNet, outperforms prior approaches on public video datasets, in some cases by a great margin. We obtain 58.6% mAP on Charades and 34.27% accuracy on Moments-in-Time.
We create a family of powerful video models which are able to: (i) learn interactions between semantic object information and raw appearance and motion features, and (ii) deploy attention in order to better learn the importance of features at each convolutional block of the network. A new network component named peer-attention is introduced, which dynamically learns the attention weights using another block or input modality. Even without pre-training, our models outperform the previous work on standard public activity recognition datasets with continuous videos, establishing new state-of-the-art. We also confirm that our findings of having neural connections from the object modality and the use of peer-attention is generally applicable for different existing architectures, improving their performances. We name our model explicitly as AssembleNet++. The code will be available at: https://sites.google.com/corp/view/assemblenet/
Recent advances have enabled oracle classifiers that can classify across many classes and input distributions with high accuracy without retraining. However, these classifiers are relatively heavyweight, so that applying them to classify video is costly. We show that day-to-day video exhibits highly skewed class distributions over the short term, and that these distributions can be classified by much simpler models. We formulate the problem of detecting the short-term skews online and exploiting models based on it as a new sequential decision making problem dubbed the Online Bandit Problem, and present a new algorithm to solve it. When applied to recognizing faces in TV shows and movies, we realize end-to-end classification speedups of 2.4-7.8x/2.6-11.2x (on GPU/CPU) relative to a state-of-the-art convolutional neural network, at competitive accuracy.
Group convolution, which divides the channels of ConvNets into groups, has achieved impressive improvement over the regular convolution operation. However, existing models, eg. ResNeXt, still suffers from the sub-optimal performance due to manually defining the number of groups as a constant over all of the layers. Toward addressing this issue, we present Groupable ConvNet (GroupNet) built by using a novel dynamic grouping convolution (DGConv) operation, which is able to learn the number of groups in an end-to-end manner. The proposed approach has several appealing benefits. (1) DGConv provides a unified convolution representation and covers many existing convolution operations such as regular dense convolution, group convolution, and depthwise convolution. (2) DGConv is a differentiable and flexible operation which learns to perform various convolutions from training data. (3) GroupNet trained with DGConv learns different number of groups for different convolution layers. Extensive experiments demonstrate that GroupNet outperforms its counterparts such as ResNet and ResNeXt in terms of accuracy and computational complexity. We also present introspection and reproducibility study, for the first time, showing the learning dynamics of training group numbers.