No Arabic abstract
Recent advances have enabled oracle classifiers that can classify across many classes and input distributions with high accuracy without retraining. However, these classifiers are relatively heavyweight, so that applying them to classify video is costly. We show that day-to-day video exhibits highly skewed class distributions over the short term, and that these distributions can be classified by much simpler models. We formulate the problem of detecting the short-term skews online and exploiting models based on it as a new sequential decision making problem dubbed the Online Bandit Problem, and present a new algorithm to solve it. When applied to recognizing faces in TV shows and movies, we realize end-to-end classification speedups of 2.4-7.8x/2.6-11.2x (on GPU/CPU) relative to a state-of-the-art convolutional neural network, at competitive accuracy.
We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multi-layer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some noise and are randomly laterally shifted. The MLP was found to have a classification accuracy of 91.58%, whereas the deep neural network was able to classify data pages at an accuracy of 99.98%. The accuracy of the deep neural network is two orders of magnitude better than the MLP.
Crowdsourced 3D CAD models are becoming easily accessible online, and can potentially generate an infinite number of training images for almost any object category.We show that augmenting the training data of contemporary Deep Convolutional Neural Net (DCNN) models with such synthetic data can be effective, especially when real training data is limited or not well matched to the target domain. Most freely available CAD models capture 3D shape but are often missing other low level cues, such as realistic object texture, pose, or background. In a detailed analysis, we use synthetic CAD-rendered images to probe the ability of DCNN to learn without these cues, with surprising findings. In particular, we show that when the DCNN is fine-tuned on the target detection task, it exhibits a large degree of invariance to missing low-level cues, but, when pretrained on generic ImageNet classification, it learns better when the low-level cues are simulated. We show that our synthetic DCNN training approach significantly outperforms previous methods on the PASCAL VOC2007 dataset when learning in the few-shot scenario and improves performance in a domain shift scenario on the Office benchmark.
Machine learning models are commonly trained end-to-end and in a supervised setting, using paired (input, output) data. Examples include recent super-resolution methods that train on pairs of (low-resolution, high-resolution) images. However, these end-to-end approaches require re-training every time there is a distribution shift in the inputs (e.g., night images vs daylight) or relevant latent variables (e.g., camera blur or hand motion). In this work, we leverage state-of-the-art (SOTA) generative models (here StyleGAN2) for building powerful image priors, which enable application of Bayes theorem for many downstream reconstruction tasks. Our method, Bayesian Reconstruction through Generative Models (BRGM), uses a single pre-trained generator model to solve different image restoration tasks, i.e., super-resolution and in-painting, by combining it with different forward corruption models. We keep the weights of the generator model fixed, and reconstruct the image by estimating the Bayesian maximum a-posteriori (MAP) estimate over the input latent vector that generated the reconstructed image. We further use variational inference to approximate the posterior distribution over the latent vectors, from which we sample multiple solutions. We demonstrate BRGM on three large and diverse datasets: (i) 60,000 images from the Flick Faces High Quality dataset (ii) 240,000 chest X-rays from MIMIC III and (iii) a combined collection of 5 brain MRI datasets with 7,329 scans. Across all three datasets and without any dataset-specific hyperparameter tuning, our simple approach yields performance competitive with current task-specific state-of-the-art methods on super-resolution and in-painting, while being more generalisable and without requiring any training. Our source code and pre-trained models are available online: https://razvanmarinescu.github.io/brgm/.
To unlock video chat for hundreds of millions of people hindered by poor connectivity or unaffordable data costs, we propose to authentically reconstruct faces on the receivers device using facial landmarks extracted at the senders side and transmitted over the network. In this context, we discuss and evaluate the benefits and disadvantages of several deep adversarial approaches. In particular, we explore quality and bandwidth trade-offs for approaches based on static landmarks, dynamic landmarks or segmentation maps. We design a mobile-compatible architecture based on the first order animation model of Siarohin et al. In addition, we leverage SPADE blocks to refine results in important areas such as the eyes and lips. We compress the networks down to about 3MB, allowing models to run in real time on iPhone 8 (CPU). This approach enables video calling at a few kbits per second, an order of magnitude lower than currently available alternatives.
This paper presents a new deep learning approach for video-based scene classification. We design a Heterogeneous Deep Discriminative Model (HDDM) whose parameters are initialized by performing an unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBM). In order to avoid the redundancy of adjacent frames, we extract spatiotemporal variation patterns within frames and represent them sparsely using Sparse Cubic Symmetrical Pattern (SCSP). Then, a pre-initialized HDDM is separately trained using the videos of each class to learn class-specific models. According to the minimum reconstruction error from the learnt class-specific models, a weighted voting strategy is employed for the classification. The performance of the proposed method is extensively evaluated on two action recognition datasets; UCF101 and Hollywood II, and three dynamic texture and dynamic scene datasets; DynTex, YUPENN, and Maryland. The experimental results and comparisons against state-of-the-art methods demonstrate that the proposed method consistently achieves superior performance on all datasets.