No Arabic abstract
We propose theoretically a reconfigurable two-dimensional (2D) hexagonal sonic crystal with higher-order topology protected by the six-fold, $C_6$, rotation symmetry. The acoustic band gap and band topology can be controlled by rotating the triangular scatterers in each unit-cell. In the nontrivial phase, the sonic crystal realizes the topological spin Hall effect in a higher-order fashion: (i) The edge states emerging in the bulk band gap exhibits partial spin-momentum locking and are gapped due to the reduced spatial symmetry at the edges. (ii) The gapped edge states, on the other hand, stabilize the topological corner states emerging in the edge band gap. The partial spin-momentum locking is manifested as pseudo-spin-polarization of edge states away from the time-reversal invariant momenta, where the pseudospin is emulated by the acoustic orbital angular momentum. We reveal the underlying topological mechanism using a corner topological index based on the symmetry representation of the acoustic Bloch bands.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional topological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insulators have been proposed as a way of realizing topological states that are two or more dimensions lower than the bulk, due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here we construct photonic higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacently coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw or edge dislocations (including step edges) in the absence of weak topological indices. When this occurs, the helical mode is necessarily bound to a dislocation characterized by a fractional Burgers vector, macroscopically detected by the existence of a stacking fault. The robustness of a helical mode on a partial defect is demonstrated by an adiabatic transformation that restores translation symmetry in the stacking fault. We present two examples of HOTIs, one intrinsic and one extrinsic, that show helical modes at partial dislocations. Since partial defects and stacking faults are commonplace in bulk crystals, the existence of such helical modes can measurably affect the expected conductivity in these materials.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tuning the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.
Band topology and related spin (or pseudo-spin) physics of photons provide us with a new dimension for manipulating light, which is potentially useful for information communication and data storage. Especially, the quantum spin Hall effect of light, where electromagnetic waves propagate along surfaces of samples with strong spin-momentum locking, paves the way for achieving topologically protected photonic spin transport. Recently, the conventional bulk-edge correspondence of the band topology has been extended to higher-order cases that enables the explorations of topological states with codimensions larger than 1 such as hinge and corner states. Here, for the first time, we demonstrate a higherorder quantum spin Hall effect of light by utilizing an all-dielectric C6v-symmetric photonic crystal. We observe corner states with opposite pseudospin polarizations at different corners owing to nontrivial higher-order topology and finite spin-spin coupling. By applying the spin-polarized excitation sources, we can selectively excite the corner states at different spatial positions through spin-momentum-locked decaying edge states, resembling the quantum spin Hall effect in a higher-order manner. Our work which breaks the barriers between the spin photonics and higher-order topology opens the frontiers for studying lower-dimensional spinful classical surface waves and supports explorations in robust communications.