No Arabic abstract
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional topological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw or edge dislocations (including step edges) in the absence of weak topological indices. When this occurs, the helical mode is necessarily bound to a dislocation characterized by a fractional Burgers vector, macroscopically detected by the existence of a stacking fault. The robustness of a helical mode on a partial defect is demonstrated by an adiabatic transformation that restores translation symmetry in the stacking fault. We present two examples of HOTIs, one intrinsic and one extrinsic, that show helical modes at partial dislocations. Since partial defects and stacking faults are commonplace in bulk crystals, the existence of such helical modes can measurably affect the expected conductivity in these materials.
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit 1D higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an $s-d$-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing $ab initio$ calculations, we demonstrate HOFAs in both the room- ($alpha$) and intermediate-temperature ($alpha$) phases of Cd$_{3}$As$_2$, KMgBi, and rutile-structure ($beta$-) PtO$_2$.
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Their topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators to identify three types of WSM phases: $1st$-order, $2nd$-order, and hybrid-order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help identify some classes of $2nd$ order WSMs. Remarkably, we find that coupling a $2nd$-order Weyl phase with a conventional $1st$-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd$_3$As$_2$, KMgBi, and rutile-structure PtO$_2$ that have been predicted to realize higher order Dirac semimetals.
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically study the dipolar-coupled gyration motion of magnetic solitons on the two-dimensional breathing kagome lattice. We calculate the phase diagram and predict both the Tamm-Shockley edge modes and the second-order corner states when the ratio between alternate lattice constants is greater than a critical value. We show that the emerging corner states are topologically robust against both structure defects and moderate disorders. Micromagnetic simulations are implemented to verify the theoretical predictions with an excellent agreement. Our results pave the way for investigating higher-order topological insulators based on magnetic solitons.