Do you want to publish a course? Click here

Partial lattice defects in higher order topological insulators

90   0   0.0 ( 0 )
 Added by Raquel Queiroz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw or edge dislocations (including step edges) in the absence of weak topological indices. When this occurs, the helical mode is necessarily bound to a dislocation characterized by a fractional Burgers vector, macroscopically detected by the existence of a stacking fault. The robustness of a helical mode on a partial defect is demonstrated by an adiabatic transformation that restores translation symmetry in the stacking fault. We present two examples of HOTIs, one intrinsic and one extrinsic, that show helical modes at partial dislocations. Since partial defects and stacking faults are commonplace in bulk crystals, the existence of such helical modes can measurably affect the expected conductivity in these materials.



rate research

Read More

Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional topological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states in the insulating gap is not always necessary since they can be hidden in the bulk energy bands, obscured by boundary artifacts of non-topological origin, or, in the case of higher-order topology, they can be gapped altogether. Crucially, in such systems the interplay between symmetry-protected topology and the corresponding symmetry defects can provide a variety of bulk probes to reveal their topological nature. For example, bulk crystallographic defects, such as disclinations and dislocations, have been shown to bind fractional charges and/or robust localized bound states in insulators protected by crystalline symmetries. Recently, exotic defects of translation symmetry called partial dislocations have been proposed as a probe of higher-order topology. However, it is a herculean task to have experimental control over the generation and probing of isolated defects in solid-state systems; hence their use as a bulk probe of topology faces many challenges. Instead, here we show that partial dislocation probes of higher-order topology are ideally suited to the context of engineered materials. Indeed, we present the first observations of partial-dislocation-induced topological modes in 2D and 3D higher-order topological insulators built from circuit-based resonator arrays. While rotational defects (disclinations) have previously been shown to indicate higher-order topology, our work provides the first experimental evidence that exotic translation defects (partial dislocations) are bulk topological probes.
104 - Yan-Bin Yang , Kai Li , L.-M. Duan 2020
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Their topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insulators have been proposed as a way of realizing topological states that are two or more dimensions lower than the bulk, due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here we construct photonic higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacently coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
374 - Z.-X. Li , Yunshan Cao , Peng Yan 2019
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically study the dipolar-coupled gyration motion of magnetic solitons on the two-dimensional breathing kagome lattice. We calculate the phase diagram and predict both the Tamm-Shockley edge modes and the second-order corner states when the ratio between alternate lattice constants is greater than a critical value. We show that the emerging corner states are topologically robust against both structure defects and moderate disorders. Micromagnetic simulations are implemented to verify the theoretical predictions with an excellent agreement. Our results pave the way for investigating higher-order topological insulators based on magnetic solitons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا