Do you want to publish a course? Click here

Towards a Decentralized Digital Engineering Assets Marketplace: Empowered by Model-based Systems Engineering and Distributed Ledger Technology

126   0   0.0 ( 0 )
 Added by Jinzhi Lu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Model-based Systems Engineering (MBSE) has been widely utilized to formalize system artifacts and facilitate their development throughout the entire lifecycle. During complex system development, MBSE models need to be frequently exchanged across stakeholders. Concerns about data security and tampering using traditional data exchange approaches obstruct the construction of a reliable marketplace for digital assets. The emerging Distributed Ledger Technology (DLT), represented by blockchain, provides a novel solution for this purpose owing to its unique advantages such as tamper-resistant and decentralization. In this paper, we integrate MBSE approaches with DLT aiming to create a decentralized marketplace to facilitate the exchange of digital engineering assets (DEAs). We first define DEAs from perspectives of digital engineering objects, development processes and system architectures. Based on this definition, the Graph-Object-Property-Point-Role-Relationship (GOPPRR) approach is used to formalize the DEAs. Then we propose a framework of a decentralized DEAs marketplace and specify the requirements, based on which we select a Directed Acyclic Graph (DAG) structured DLT solution. As a proof-of-concept, a prototype of the proposed DEAs marketplace is developed and a case study is conducted to verify its feasibility. The experiment results demonstrate that the proposed marketplace facilitates free DEAs exchange with a high level of security, efficiency and decentralization.



rate research

Read More

Digital Engineering, the digital transformation of engineering to leverage digital technologies, is coming globally. This paper explores digital systems engineering, which aims at developing theory, methods, models, and tools to support the emerging digital engineering. A critical task is to digitalize engineering artifacts, thus enabling information sharing across platform, across life cycle, and across domains. We identify significant challenges and enabling digital technologies; analyze the transition from traditional engineering to digital engineering; define core concepts, including digitalization, unique identification, digitalized artifacts, digital augmentation, and others; present a big picture of digital systems engineering in four levels: vision, strategy, action, and foundation; briefly discuss each of main areas of research issues. Digitalization enables fast infusing and leveraging novel digital technologies; unique identification enables information traceability and accountability in engineering lifecycle; provenance enables tracing dependency relations among engineering artifacts; supporting model reproducibility and replicability; helping with trustworthiness evaluation of digital engineering artifacts.
To demystify the Digital Twin concept, we built a simple yet representative thermal incubator system. The incubator is an insulated box fitted with a heatbed, and complete with a software system for communication, a controller, and simulation models. We developed two simulation models to predict the temperature inside the incubator, one with two free parameters and one with four free parameters. Our experiments showed that the latter model was better at predicting the thermal inertia of the heatbed itself, which makes it more appropriate for further development of the digital twin. The hardware and software used in this case study are available open source, providing an accessible platform for those who want to develop and verify their own techniques for digital twins.
62 - C. Mukherjee , M. Deng , F. Marc 2020
Gate-all-around Vertical Nanowire Field Effect Transistors (VNWFET) are emerging devices, which are well suited to pursue scaling beyond lateral scaling limitations around 7nm. This work explores the relative merits and drawbacks of the technology in the context of logic cell design. We describe a junctionless nanowire technology and associated compact model, which accurately describes fabricated device behavior in all regions of operations for transistors based on between 16 and 625 parallel nanowires of diameters between 22 and 50nm. We used this model to simulate the projected performance of inverter logic gates based on passive load, active load and complementary topologies and carry out an performance exploration for the number of nanowires in transistors. In terms of compactness, through a dedicated full 3D layout design, we also demonstrate a 1.4x reduction in lateral dimensions for the complementary structure with respect to 7nm FinFET-based inverters.
Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalisms of system architectures for supporting model-based requirement elicitation, specification, design, development, testing, fielding, etc. However, the modeling languages and techniques are quite heterogeneous, even within the same enterprise system, which creates difficulties for data interoperability. The discrepancies among data structures and language syntaxes make information exchange among MBSE models even more difficult, resulting in considerable information deviations when connecting data flows across the enterprise. For this reason, this paper presents an ontology based upon graphs, objects, points, properties, roles, and relationships with entensions (GOPPRRE), providing meta models that support the various lifecycle stages of MBSE formalisms. In particular, knowledge-graph models are developed to support unified model representations to further implement ontological data integration based on GOPPRRE throughout the entire lifecycle. The applicability of the MBSE formalism is verified using quantitative and qualitative approaches. Moreover, the GOPPRRE ontologies are generated from the MBSE language formalisms in a domain-specific modeling tool, textit{MetaGraph} in order to evaluate its availiablity. The results demonstrate that the proposed ontology supports both formal structures and the descriptive logic of the systems engineering lifecycle.
The coronagraphic instrument (CGI) on the Wide-Field Infrared Survey Telescope (WFIRST) will demonstrate technologies and methods for high-contrast direct imaging and spectroscopy of exoplanet systems in reflected light, including polarimetry of circumstellar disks. The WFIRST management and CGI engineering and science investigation teams have developed requirements for the instrument, motivated by the objectives and technology development needs of potential future flagship exoplanet characterization missions such as the NASA Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/IR Surveyor (LUVOIR). The requirements have been refined to support recommendations from the WFIRST Independent External Technical/Management/Cost Review (WIETR) that the WFIRST CGI be classified as a technology demonstration instrument instead of a science instrument. This paper provides a description of how the CGI requirements flow from the top of the overall WFIRST mission structure through the Level 2 requirements, where the focus here is on capturing the detailed context and rationales for the CGI Level 2 requirements. The WFIRST requirements flow starts with the top Program Level Requirements Appendix (PLRA), which contains both high-level mission objectives as well as the CGI-specific baseline technical and data requirements (BTR and BDR, respectively)... We also present the process and collaborative tools used in the L2 requirements development and management, including the collection and organization of science inputs, an open-source approach to managing the requirements database, and automating documentation. The tools created for the CGI L2 requirements have the potential to improve the design and planning of other projects, streamlining requirement management and maintenance. [Abstract Abbreviated]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا