Do you want to publish a course? Click here

Design Ontology Supporting Model-based Systems-engineering Formalisms

190   0   0.0 ( 0 )
 Added by Jinzhi Lu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalisms of system architectures for supporting model-based requirement elicitation, specification, design, development, testing, fielding, etc. However, the modeling languages and techniques are quite heterogeneous, even within the same enterprise system, which creates difficulties for data interoperability. The discrepancies among data structures and language syntaxes make information exchange among MBSE models even more difficult, resulting in considerable information deviations when connecting data flows across the enterprise. For this reason, this paper presents an ontology based upon graphs, objects, points, properties, roles, and relationships with entensions (GOPPRRE), providing meta models that support the various lifecycle stages of MBSE formalisms. In particular, knowledge-graph models are developed to support unified model representations to further implement ontological data integration based on GOPPRRE throughout the entire lifecycle. The applicability of the MBSE formalism is verified using quantitative and qualitative approaches. Moreover, the GOPPRRE ontologies are generated from the MBSE language formalisms in a domain-specific modeling tool, textit{MetaGraph} in order to evaluate its availiablity. The results demonstrate that the proposed ontology supports both formal structures and the descriptive logic of the systems engineering lifecycle.



rate research

Read More

Many techniques were proposed for detecting software misconfigurations in cloud systems and for diagnosing unintended behavior caused by such misconfigurations. Detection and diagnosis are steps in the right direction: misconfigurations cause many costly failures and severe performance issues. But, we argue that continued focus on detection and diagnosis is symptomatic of a more serious problem: configuration design and implementation are not yet first-class software engineering endeavors in cloud systems. Little is known about how and why developers evolve configuration design and implementation, and the challenges that they face in doing so. This paper presents a source-code level study of the evolution of configuration design and implementation in cloud systems. Our goal is to understand the rationale and developer practices for revising initial configuration design/implementation decisions, especially in response to consequences of misconfigurations. To this end, we studied 1178 configuration-related commits from a 2.5 year version-control history of four large-scale, actively-maintained open-source cloud systems (HDFS, HBase, Spark, and Cassandra). We derive new insights into the software configuration engineering process. Our results motivate new techniques for proactively reducing misconfigurations by improving the configuration design and implementation process in cloud systems. We highlight a number of future research directions.
181 - Kirill A Sorudeykin 2009
The main problems of Software Engineering appear as a result of incompatibilities. For example, the quality of organization of the production process depends on correspondence with existent resources and on a common understanding of project goals by all team members. Software design is another example. Its successfulness rides on the architectures conformity with a projects concepts. This is a point of great nicety. All elements should create a single space of interaction. And if the laws of such a space are imperfect, missequencing comes and the concept of a software system fails. We must do our best for this not to happen. To that end, having a subtle perception of systems structures is essential. Such knowledge can be based only on a fresh approach to the logical law.
Nowadays many software development frameworks implement Behavior-Driven Development (BDD) as a mean of automating the test of interactive systems under construction. Automated testing helps to simulate users action on the User Interface and therefore check if the system behaves properly and in accordance to Scenarios that describe functional requirements. However, most of tools supporting BDD requires that tests should be written using low-level events and components that only exist when the system is already implemented. As a consequence of such low-level of abstraction, BDD tests can hardly be reused with diverse artifacts and wi
In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the requirements problem, thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jacksons ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jacksons formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.
The benefits that arise from the adoption of a systems engineering approach to the design of engineered systems are well understood and documented. However , with software systems, different approaches are required given the changeability of requirements and the malleability of software. With the design of industrial cyber-physical systems, one is confronted with the challenge of designing engineered systems that have a significant software component. Furthermore, that software component must be able to seamlessly interact with both the enterprises business systems and industrial systems. In this paper, we present Janus, which together with the GORITE BDI agent framework, provides a methodology for the design of agent-based industrial cyber-physical systems. Central to the Janus approach is the development of a logical architecture as in traditional systems engineering and then the allocation of the logical requirements to a BDI (Belief Desire Intention) agent architecture which is derived from the physical architecture for the system. Janus has its origins in product manufacturing; in this paper, we apply it to the problem of Fault Location, Isolation and Service Restoration (FLISR) for power substations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا