Do you want to publish a course? Click here

Fast Radio Bursts from reconnection events in magnetar magnetospheres

109   0   0.0 ( 0 )
 Added by Maxim Lyutikov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lyutikov (2002) predicted radio emission from soft gamma-ray repeaters (SGRs) during their bursting activity. Detection of a Mega-Jansky radio burst in temporal coincidence with high energy bursts from a Galactic magnetar SGR 1935+2154 confirms that prediction. Similarity of this radio event with Fast Radio Bursts (FRBs) suggests that FRBs are produced within magnetar magnetospheres. We demonstrate that SGR 1935+2154 satisfies the previously derived constraints on the physical parameters at the FRBs loci. Coherent radio emission is generated in the inner parts of the magnetosphere at $r< 100 R_{rm NS}$. The radio emission is produced by the yet unidentified plasma emission process, occurring during the initial stages of reconnection events.



rate research

Read More

Quasi-periodic oscillations inferred during rare magnetar giant flare tails were initially interpreted as torsional oscillations of the neutron star (NS) crust, and have been more recently described as global core+crust perturbations. Similar frequencies are also present in high signal-to-noise magnetar short bursts. In magnetars, disturbances of the field are strongly coupled to the NS crust regardless of the triggering mechanism of short bursts. For low-altitude magnetospheric magnetar models of fast radio bursts (FRBs) associated with magnetar short bursts, such as the low-twist model, crustal oscillations may be associated with additional radio bursts in the encompassing short burst event (as recently suggested for SGR 1935+2154). Given the large extragalactic volume probed by wide-field radio transient facilities, this offers the prospect of studying NS crusts leveraging samples far more numerous than galactic high-energy magnetar bursts by studying statistics of sub-burst structure or clustered trains of FRBs. We explore the prospects for distinguishing NS equation of state models with increasingly larger future sets of FRB observations. Lower $l$-number eigenmodes (corresponding to FRB time intervals of $sim5-50$ ms) are likely less susceptible than high-$l$ modes to confusion by systematic effects associated with the NS crust physics, magnetic field, and damping. They may be more promising in their utility, and also may corroborate models where FRBs arise from mature magnetars. Future observational characterization of such signals can also determine whether they can be employed as cosmological standard oscillators to constrain redshift, or can be used to constrain the mass of FRB-producing magnetars when reliable redshifts are available.
Fast radio bursts (FRBs) are short (millisecond) radio pulses originating from enigmatic sources at extragalactic distances so far lacking a detection in other energy bands. Magnetized neutron stars (magnetars) have been considered as the sources powering the FRBs, but the connection is controversial because of differing energetics and the lack of radio and X-ray detections with similar characteristics in the two classes. We report here the detection by the AGILE satellite on April 28, 2020 of an X-ray burst in coincidence with the very bright radio burst from the Galactic magnetar SGR 1935+2154. The burst detected by AGILE in the hard X-ray band (18-60 keV) lasts about 0.5 seconds, it is spectrally cutoff above 80 keV, and implies an isotropically emitted energy ~ $10^{40}$ erg. This event is remarkable in many ways: it shows for the first time that a magnetar can produce X-ray bursts in coincidence with FRB-like radio bursts; it also suggests that FRBs associated with magnetars may emit X-ray bursts of both magnetospheric and radio-pulse types that may be discovered in nearby sources. Guided by this detection, we discuss SGR 1935+2154 in the context of FRBs, and especially focus on the class of repeating-FRBs. Based on energetics, magnetars with fields B ~ $10^{15}$ G may power the majority of repeating-FRBs. Nearby repeating-FRBs offer a unique occasion to consolidate the FRB-magnetar connection, and we present new data on the X-ray monitoring of nearby FRBs. Our detection enlightens and constrains the physical process leading to FRBs: contrary to previous expectations, high-brightness temperature radio emission coexists with spectrally-cutoff X-ray radiation.
160 - G.L. Israel , M. Burgay , N. Rea 2020
We report on simultaneous radio and X-ray observations of the radio-emitting magnetar 1E1547.0-5408 on 2009 January 25 and February 3, with the 64-m Parkes radio telescope and the Chandra and XMM-Newton X-ray observatories. The magnetar was observed in a period of intense X-ray bursting activity and enhanced X-ray emission. We report here on the detection of two radio bursts from 1E1547.0-5408, reminiscent of Fast Radio Bursts (FRBs). One of the radio bursts was anticipated by ~1s (about half a rotation period of the pulsar) by a bright SGR-like X-ray burst, resulting in a F_radio/F_X ~ 10^-9. Radio pulsations were not detected during the observation showing the FRB-like radio bursts, while they were detected in the previous radio observation. We also found that the two radio bursts are neither aligned with the latter radio pulsations nor with the peak of the X-ray pulse profile (phase shift of ~0.2). Comparing the luminosity of these FRB-like bursts and those reported from SGR1935+2154, we find that the wide range in radio efficiency and/or luminosity of magnetar bursts in the Galaxy may bridge the gap between ordinary pulsar radio bursts and the extragalactic FRB phenomenon.
123 - Liam Connor , Emily Petroff 2018
Fast radio bursts (FRBs) are bright, millisecond-duration radio pulses whose origins are unknown. To date, only one (FRB 121102) out of several dozen has been seen to repeat, though the extent to which it is exceptional remains unclear. We discuss detecting repetition from FRBs, which will be very important for understanding their physical origin, and which also allows for host galaxy localisation. We show how the combination of instrument sensitivity, beamshapes, and individual FRB luminosity functions affect the detection of sources whose repetition is not necessarily described by a homogeneous Poisson process. We demonstrate that the Canadian Hydrogen Intensity Mapping Experiment (CHIME) could detect many new repeating FRBs for which host galaxies could be subsequently localised using other interferometers, but it will not be an ideal instrument for monitoring FRB 121102. If the luminosity distributions of repeating FRBs are given by power-laws with significantly more dim than bright bursts, CHIMEs repetition discoveries could preferentially come not from its own discoveries, but from sources first detected with lower-sensitivity instruments like the Australian Square Kilometer Array Pathfinder (ASKAP) in flys eye mode. We then discuss observing strategies for upcoming surveys, and advocate following up sources at approximately regular intervalsand with telescopes of higher sensitivity, when possible. Finally, we discuss doing pulsar-like periodicity searching on FRB follow-up data, based on the idea that while most pulses are undetectable, folding on an underlying rotation period could reveal the hidden signal.
112 - Maxim Lyutikov 2021
We develop a model of the generation of coherent radio emission in the Crab pulsar, magnetars and Fast Radio Bursts (FRBs). Emission is produced by a reconnection-generated beam of particles via a variant of Free Electron Laser (FEL) mechanism, operating in a weakly-turbulent, guide-field dominated plasma. We first consider nonlinear Thomson scattering in a guide-field dominated regime, and apply to model to explain emission bands observed in Crab pulsar and in Fast Radio Bursts. We consider particle motion in a combined fields of the electromagnetic wave and thee lectromagnetic (Alfvenic) wiggler. Charge bunches, created via a ponderomotive force, Compton/Raman scatter the wiggler field coherently. The model is both robust to the underlying plasma parameters and succeeds in reproducing a number of subtle observed features: (i) emission frequencies depend mostly on the length $lambda_t$ of turbulence and the Lorentz factor of the reconnection generated beam, $omega sim gamma_b^2 ( c/lambda_t) $ - it is independent of the absolute value of the underlying magnetic field. (ii) The model explains both broadband emission and the presence of emission stripes, including multiple stripes observed in the High Frequency Interpulse of the Crab pulsar. (iii) The model reproduces correlated polarization properties: presence of narrow emission bands in the spectrum favors linear polarization, while broadband emission can have arbitrary polarization. (iv) The mechanism is robust to the momentum spread of the particle in the beam. We also discuss a model of wigglers as non-linear force-free Alfven solitons (light darts).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا