Do you want to publish a course? Click here

Coherent emission in pulsars, magnetars and Fast Radio Bursts: reconnection-driven free electron laser

113   0   0.0 ( 0 )
 Added by Maxim Lyutikov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a model of the generation of coherent radio emission in the Crab pulsar, magnetars and Fast Radio Bursts (FRBs). Emission is produced by a reconnection-generated beam of particles via a variant of Free Electron Laser (FEL) mechanism, operating in a weakly-turbulent, guide-field dominated plasma. We first consider nonlinear Thomson scattering in a guide-field dominated regime, and apply to model to explain emission bands observed in Crab pulsar and in Fast Radio Bursts. We consider particle motion in a combined fields of the electromagnetic wave and thee lectromagnetic (Alfvenic) wiggler. Charge bunches, created via a ponderomotive force, Compton/Raman scatter the wiggler field coherently. The model is both robust to the underlying plasma parameters and succeeds in reproducing a number of subtle observed features: (i) emission frequencies depend mostly on the length $lambda_t$ of turbulence and the Lorentz factor of the reconnection generated beam, $omega sim gamma_b^2 ( c/lambda_t) $ - it is independent of the absolute value of the underlying magnetic field. (ii) The model explains both broadband emission and the presence of emission stripes, including multiple stripes observed in the High Frequency Interpulse of the Crab pulsar. (iii) The model reproduces correlated polarization properties: presence of narrow emission bands in the spectrum favors linear polarization, while broadband emission can have arbitrary polarization. (iv) The mechanism is robust to the momentum spread of the particle in the beam. We also discuss a model of wigglers as non-linear force-free Alfven solitons (light darts).



rate research

Read More

170 - Maxim Lyutikov 2020
We discuss coherent free electron laser (FEL) operating during explosive reconnection events in magnetized pair plasma of magnetar magnetospheres. The model explains many salient features of Fast Radio Bursts/magnetars radio emission: temporal coincidence of radio and high energy bursts, high efficiency of conversion of plasma kinetic energy into coherent radiation, presence of variable, narrow-band emission features drifting down in frequency, high degree of linear polarization. The model relies on magnetar-specific drifting $e^pm$ plasma components (which generate wiggler field due to the development of the firehose instability) and the presence of reconnection-generated particle beam with mild Lorentz factor of $gamma_b sim$ few hundred.
422 - Ira Wasserman 2021
The repeating FRBs 180916.J0158 and 121102 are visible during periodically-occuring windows in time. We consider the constraints on internal magnetic fields and geometry if the cyclical behavior observed for FRB~180916.J0158 and FRB 121102 is due to precession of magnetars. In order to frustrate vortex line pinning we argue that internal magnetic fields must be stronger than about $10^{16}$ Gauss, which is large enough to prevent superconductivity in the core and destroy the crustal lattice structure. We conjecture that the magnetic field inside precessing magnetars has three components, (1) a dipole component with characteristic strength $sim 10^{14}$ Gauss; (2) a toroidal component with characteristic strength $sim 10^{15}-10^{16}$ Gauss which only occupies a modest fraction of the stellar volume; and (3) a disordered field with characteristic strength $sim 10^{16}$ Gauss. The disordered field is primarily responsible for permitting precession, which stops once this field component decays away, which we conjecture happens after $sim 1000$ years. Conceivably, as the disordered component damps bursting activity diminishes and eventually ceases. We model the quadrupolar magnetic distortion of the star, which is due to its ordered components primarily, as triaxial and very likely prolate. We address the question of whether or not the spin frequency ought to be detectable for precessing, bursting magnetars by constructing a specific model in which bursts happen randomly in time with random directions distributed in or between cones relative to a single symmetry axis. Within the context of these specific models, we find that there are precession geometries for which detecting the spin frequency is very unlikely.
75 - S.B. Popov 2018
We briefly review main observational properties of fast radio bursts (FRBs) and discuss two most popular hypothesis for the explanation of these enigmatic intense millisecond radio flashes. FRBs most probably originate on extragalactic distances, and their rate on the sky is about a few thousand per day with fluences above $sim$~1~Jy~ms (or with fluxes larger than few tenths of Jy). Two leading scenarios describing these events include strong flares of magnetars and supergiant pulses of young radio pulsars with large rotational energy losses, correspondingly. At the moment, it is impossible to choose between these models. However, new telescopes can help to solve the puzzle of FRBs in near future.
Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a ~Jy flux at ~1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.
108 - Maxim Lyutikov 2020
Lyutikov (2002) predicted radio emission from soft gamma-ray repeaters (SGRs) during their bursting activity. Detection of a Mega-Jansky radio burst in temporal coincidence with high energy bursts from a Galactic magnetar SGR 1935+2154 confirms that prediction. Similarity of this radio event with Fast Radio Bursts (FRBs) suggests that FRBs are produced within magnetar magnetospheres. We demonstrate that SGR 1935+2154 satisfies the previously derived constraints on the physical parameters at the FRBs loci. Coherent radio emission is generated in the inner parts of the magnetosphere at $r< 100 R_{rm NS}$. The radio emission is produced by the yet unidentified plasma emission process, occurring during the initial stages of reconnection events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا