No Arabic abstract
We report on simultaneous radio and X-ray observations of the radio-emitting magnetar 1E1547.0-5408 on 2009 January 25 and February 3, with the 64-m Parkes radio telescope and the Chandra and XMM-Newton X-ray observatories. The magnetar was observed in a period of intense X-ray bursting activity and enhanced X-ray emission. We report here on the detection of two radio bursts from 1E1547.0-5408, reminiscent of Fast Radio Bursts (FRBs). One of the radio bursts was anticipated by ~1s (about half a rotation period of the pulsar) by a bright SGR-like X-ray burst, resulting in a F_radio/F_X ~ 10^-9. Radio pulsations were not detected during the observation showing the FRB-like radio bursts, while they were detected in the previous radio observation. We also found that the two radio bursts are neither aligned with the latter radio pulsations nor with the peak of the X-ray pulse profile (phase shift of ~0.2). Comparing the luminosity of these FRB-like bursts and those reported from SGR1935+2154, we find that the wide range in radio efficiency and/or luminosity of magnetar bursts in the Galaxy may bridge the gap between ordinary pulsar radio bursts and the extragalactic FRB phenomenon.
Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119-6127 at X-ray, with XMM-Newton & NuSTAR, and at radio energies with Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts, and recovers on a time scale of ~70 seconds. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars, and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio emitting particles.
Fast radio bursts (FRBs) are short (millisecond) radio pulses originating from enigmatic sources at extragalactic distances so far lacking a detection in other energy bands. Magnetized neutron stars (magnetars) have been considered as the sources powering the FRBs, but the connection is controversial because of differing energetics and the lack of radio and X-ray detections with similar characteristics in the two classes. We report here the detection by the AGILE satellite on April 28, 2020 of an X-ray burst in coincidence with the very bright radio burst from the Galactic magnetar SGR 1935+2154. The burst detected by AGILE in the hard X-ray band (18-60 keV) lasts about 0.5 seconds, it is spectrally cutoff above 80 keV, and implies an isotropically emitted energy ~ $10^{40}$ erg. This event is remarkable in many ways: it shows for the first time that a magnetar can produce X-ray bursts in coincidence with FRB-like radio bursts; it also suggests that FRBs associated with magnetars may emit X-ray bursts of both magnetospheric and radio-pulse types that may be discovered in nearby sources. Guided by this detection, we discuss SGR 1935+2154 in the context of FRBs, and especially focus on the class of repeating-FRBs. Based on energetics, magnetars with fields B ~ $10^{15}$ G may power the majority of repeating-FRBs. Nearby repeating-FRBs offer a unique occasion to consolidate the FRB-magnetar connection, and we present new data on the X-ray monitoring of nearby FRBs. Our detection enlightens and constrains the physical process leading to FRBs: contrary to previous expectations, high-brightness temperature radio emission coexists with spectrally-cutoff X-ray radiation.
A bright burst, followed by an X-ray tail lasting ~10 ks, was detected during an XMM-Newton observation of the magnetar 1E 1547.0-5408 carried out on 2009 February 3. The burst, also observed by SWIFT/BAT, had a spectrum well fit by the sum of two blackbodies with temperatures of ~4 keV and 10 keV and a fluence in the 0.3-150 keV energy range of ~1e-5 erg/cm2. The X-ray tail had a fluence of ~4e-8 erg/cm2. Thanks to the knowledge of the distances and relative optical depths of three dust clouds between us and 1E 1547.0-5408, we show that most of the X-rays in the tail can be explained by dust scattering of the burst emission, except for the first ~20-30 s. We point out that other X-ray tails observed after strong magnetar bursts may contain a non-negligible contribution due to dust scattering.
We report the detection of eight bright X-ray bursts from the 6.5-s magnetar 1E 1048.1-5937, during a 2013 July observation campaign with the Nuclear Spectroscopic Telescope Array (NuSTAR). We study the morphological and spectral properties of these bursts and their evolution with time. The bursts resulted in count rate increases by orders of magnitude, sometimes limited by the detector dead time, and showed blackbody spectra with kT=6-8 keV in the T90 duration of 1-4 s, similar to earlier bursts detected from the source. We find that the spectra during the tail of the bursts can be modeled with an absorbed blackbody with temperature decreasing with flux. The bursts flux decays followed a power-law of index 0.8-0.9. In the burst tail spectra, we detect a ~13 keV emission feature, similar to those reported in previous bursts from this source as well as from other magnetars observed with the Rossi X-ray Timing Explorer (RXTE). We explore possible origins of the spectral feature such as proton cyclotron emission, which implies a magnetic field strength of B~2X10^15 G in the emission region. However, the consistency of the energy of the feature in different objects requires further explanation.
Magnetars are young, rotating neutron stars that possess larger magnetic fields ($B$ $approx$ $10^{13}$-$10^{15}$ G) and longer rotational periods ($P$ $approx$ 1-12 s) than ordinary pulsars. In contrast to rotation-powered pulsars, magnetar emission is thought to be fueled by the evolution and decay of their powerful magnetic fields. They display highly variable radio and X-ray emission, but the processes responsible for this behavior remain a mystery. We report the discovery of bright, persistent individual X-ray pulses from XTE J1810-197, a transient radio magnetar, using the Neutron star Interior Composition Explorer (NICER) following its recent radio reactivation. Similar behavior has only been previously observed from a magnetar during short time periods following a giant flare. However, the X-ray pulses presented here were detected outside of a flaring state. They are less energetic and display temporal structure that differs from the impulsive X-ray events previously observed from the magnetar class, such as giant flares and short X-ray bursts. Our high frequency radio observations of the magnetar, carried out simultaneously with the X-ray observations, demonstrate that the relative alignment between the X-ray and radio pulses varies on rotational timescales. No correlation was found between the amplitudes or temporal structure of the X-ray and radio pulses. The magnetars 8.3 GHz radio pulses displayed frequency structure, which was not observed in the pulses detected simultaneously at 31.9 GHz. Many of the radio pulses were also not detected simultaneously at both frequencies, which indicates that the underlying emission mechanism producing these pulses is not broadband. We find that the radio pulses from XTE J1810-197 share similar characteristics to radio bursts detected from fast radio burst (FRB) sources, some of which are now thought to be produced by active magnetars.