Do you want to publish a course? Click here

Approximation properties of multipoint boundary-value problems

55   0   0.0 ( 0 )
 Added by Vitalii Soldatov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider a wide class of linear boundary-value problems for systems of $r$-th order ordinary differential equations whose solutions range over the normed complex space $(C^{(n)})^m$ of $ngeq r$ times continuously differentiable functions $y:[a,b]tomathbb{C}^{m}$. The boundary conditions for these problems are of the most general form $By=q$, where $B$ is an arbitrary continuous linear operator from $(C^{(n)})^{m}$ to $mathbb{C}^{rm}$. We prove that the solutions to the considered problems can be approximated in $(C^{(n)})^m$ by solutions to some multipoint boundary-value problems. The latter problems do not depend on the right-hand sides of the considered problem and are built explicitly.



rate research

Read More

We study boundary value problems for degenerate elliptic equations and systems with square integrable boundary data. We can allow for degeneracies in the form of an $A_{2}$ weight. We obtain representations and boundary traces for solutions in appropriate classes, perturbation results for solvability and solvability in some situations. The technology of earlier works of the first two authors can be adapted to the weighted setting once the needed quadratic estimate is established and we even improve some results in the unweighted setting. The proof of this quadratic estimate does not follow from earlier results on the topic and is the core of the article.
163 - Pascal Auscher 2014
We prove a number of textit{a priori} estimates for weak solutions of elliptic equations or systems with vertically independent coefficients in the upper-half space. These estimates are designed towards applications to boundary value problems of Dirichlet and Neumann type in various topologies. We work in classes of solutions which include the energy solutions. For those solutions, we use a description using the first order systems satisfied by their conormal gradients and the theory of Hardy spaces associated with such systems but the method also allows us to design solutions which are not necessarily energy solutions. We obtain precise comparisons between square functions, non-tangential maximal functions and norms of boundary trace. The main thesis is that the range of exponents for such results is related to when those Hardy spaces (which could be abstract spaces) are identified to concrete spaces of tempered distributions. We consider some adapted non-tangential sharp functions and prove comparisons with square functions. We obtain boundedness results for layer potentials, boundary behavior, in particular strong limits, which is new, and jump relations. One application is an extrapolation for solvability a la {v{S}}ne{ui}berg. Another one is stability of solvability in perturbing the coefficients in $L^infty$ without further assumptions. We stress that our results do not require De Giorgi-Nash assumptions, and we improve the available ones when we do so.
279 - Pascal Auscher 2014
Given any elliptic system with $t$-independent coefficients in the upper-half space, we obtain representation and trace for the conormal gradient of solutions in the natural classes for the boundary value problems of Dirichlet and Neumann types with area integral control or non-tangential maximal control. The trace spaces are obtained in a natural range of boundary spaces which is parametrized by properties of some Hardy spaces. This implies a complete picture of uniqueness vs solvability and well-posedness.
In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-self-adjoint distribution theory and the corresponding biorthogonal Fourier analysis. We give applications of the developed analysis to obtain a-priori estimates for solutions of operators that are elliptic within the constructed calculus.
Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the SzegH o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا