No Arabic abstract
Watching instructional videos are often used to learn about procedures. Video captioning is one way of automatically collecting such knowledge. However, it provides only an indirect, overall evaluation of multimodal models with no finer-grained quantitative measure of what they have learned. We propose instead, a benchmark of structured procedural knowledge extracted from cooking videos. This work is complementary to existing tasks, but requires models to produce interpretable structured knowledge in the form of verb-argument tuples. Our manually annotated open-vocabulary resource includes 356 instructional cooking videos and 15,523 video clip/sentence-level annotations. Our analysis shows that the proposed task is challenging and standard modeling approaches like unsupervised segmentation, semantic role labeling, and visual action detection perform poorly when forced to predict every action of a procedure in a structured form.
We present a novel method for aligning a sequence of instructions to a video of someone carrying out a task. In particular, we focus on the cooking domain, where the instructions correspond to the recipe. Our technique relies on an HMM to align the recipe steps to the (automatically generated) speech transcript. We then refine this alignment using a state-of-the-art visual food detector, based on a deep convolutional neural network. We show that our technique outperforms simpler techniques based on keyword spotting. It also enables interesting applications, such as automatically illustrating recipes with keyframes, and searching within a video for events of interest.
People often watch videos on the web to learn how to cook new recipes, assemble furniture or repair a computer. We wish to enable robots with the very same capability. This is challenging; there is a large variation in manipulation actions and some videos even involve multiple persons, who collaborate by sharing and exchanging objects and tools. Furthermore, the learned representations need to be general enough to be transferable to robotic systems. On the other hand, previous work has shown that the space of human manipulation actions has a linguistic, hierarchical structure that relates actions to manipulated objects and tools. Building upon this theory of language for action, we propose a framework for understanding and executing demonstrated action sequences from full-length, unconstrained cooking videos on the web. The framework takes as input a cooking video annotated with object labels and bounding boxes, and outputs a collaborative manipulation action plan for one or more robotic arms. We demonstrate performance of the system in a standardized dataset of 100 YouTube cooking videos, as well as in three full-length Youtube videos that include collaborative actions between two participants. We additionally propose an open-source platform for executing the learned plans in a simulation environment as well as with an actual robotic arm.
Eliciting knowledge contained in language models via prompt-based learning has shown great potential in many natural language processing tasks, such as text classification and generation. Whereas, the applications for more complex tasks such as event extraction are less studied, since the design of prompt is not straightforward due to the complicated types and arguments. In this paper, we explore to elicit the knowledge from pre-trained language models for event trigger detection and argument extraction. Specifically, we present various joint trigger/argument prompt methods, which can elicit more complementary knowledge by modeling the interactions between different triggers or arguments. The experimental results on the benchmark dataset, namely ACE2005, show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in the few-shot scenario where only a few samples are used for training.
Current event-centric knowledge graphs highly rely on explicit connectives to mine relations between events. Unfortunately, due to the sparsity of connectives, these methods severely undermine the coverage of EventKGs. The lack of high-quality labelled corpora further exacerbates that problem. In this paper, we propose a knowledge projection paradigm for event relation extraction: projecting discourse knowledge to narratives by exploiting the commonalities between them. Specifically, we propose Multi-tier Knowledge Projection Network (MKPNet), which can leverage multi-tier discourse knowledge effectively for event relation extraction. In this way, the labelled data requirement is significantly reduced, and implicit event relations can be effectively extracted. Intrinsic experimental results show that MKPNet achieves the new state-of-the-art performance, and extrinsic experimental results verify the value of the extracted event relations.
Entity extraction is an important task in text mining and natural language processing. A popular method for entity extraction is by comparing substrings from free text against a dictionary of entities. In this paper, we present several techniques as a post-processing step for improving the effectiveness of the existing entity extraction technique. These techniques utilise models trained with the web-scale corpora which makes our techniques robust and versatile. Experiments show that our techniques bring a notable improvement on efficiency and effectiveness.