Do you want to publish a course? Click here

Properties and characteristics of the WFIRST H4RG-10 detectors

63   0   0.0 ( 0 )
 Added by Gregory Mosby Jr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Wide-Field Infrared Survey Telescope (WFIRST) will answer fundamental questions about the evolution of dark energy over time and expand the catalog of known exoplanets into new regions of parameter space. Using a Hubble-sized mirror and 18 newly developed HgCdTe 4K x 4K photodiode arrays (H4RG-10), WFIRST will measure the positions and shapes of hundreds of millions of galaxies, the light curves of thousands of supernovae, and the microlensing signals of over a thousand exoplanets toward the bulge of the Galaxy. These measurements require unprecedented sensitivity and characterization of the Wide Field Instrument (WFI), particularly its detectors. The WFIRST project undertook an extensive detector development program to create focal plane arrays that meet these science requirements. These prototype detectors have been characterized and their performance demonstrated in a relevant space-like environment (thermal vacuum, vibration, acoustic, and radiation testing), advancing the H4RG-10s technology readiness level (TRL) to TRL-6. We present the performance characteristics of these TRL-6 demonstration devices.

rate research

Read More

Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.
ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a concept for a NASA probe-class space mission. It is the follow-up space mission to WFIRST, boosting its scientific return by obtaining deep IR slit spectroscopy for 70% of all galaxies imaged by a 2000 sq deg WFIRST High Latitude Survey at z>0.5. ATLAS will measure accurate and precise redshifts for 200M galaxies out to z < 7, and deliver spectra that enable a wide range of diagnostic studies of the physical properties of galaxies over most of cosmic history. ATLAS Probe science spans four broad categories: (1) Revolutionizing galaxy evolution studies by tracing the relation between galaxies and dark matter from galaxy groups to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly; (2) Opening a new window into the dark Universe by weighing the dark matter filaments using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of General Relativity using galaxy clustering; (3) Probing the Milky Ways dust-enshrouded regions, reaching the far side of our Galaxy; and (4) Exploring the formation history of the outer Solar System by characterizing Kuiper Belt Objects. ATLAS Probe is a 1.5m telescope with a field of view of 0.4 sq deg, and uses Digital Micro-mirror Devices (DMDs) as slit selectors. It has a spectroscopic resolution of R = 1000 over 1-4 microns, and a spectroscopic multiplex factor >5,000. ATLAS is designed to fit within the NASA probe-class space mission cost envelope; it has a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology. ATLAS Probe will lead to transformative science over the entire range of astrophysics: from galaxy evolution to the dark Universe, from Solar System objects to the dusty regions of the Milky Way.
SPHEREx is a proposed NASA MIDEX mission selected for Phase A study. SPHEREx would carry out the first all-sky spectral survey in the near infrared. At the end of its two-year mission, SPHEREx would obtain 0.75-to-5$mu$m spectra of every 6.2 arcsec pixel on the sky, with spectral resolution R>35 and a 5-$sigma$ sensitivity AB$>$19 per spectral/spatial resolution element. More details concerning SPHEREx are available at http://spherex.caltech.edu. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. Though these three themes are undoubtedly compelling, they are far from exhausting the scientific output of SPHEREx. Indeed, SPHEREx would create a unique all-sky spectral database including spectra of very large numbers of astronomical and solar system targets, including both extended and diffuse sources. These spectra would enable a wide variety of investigations, and the SPHEREx team is dedicated to making the data available to the community to enable these investigations, which we refer to as Legacy Science. To that end, we have sponsored two workshops for the general scientific community to identify the most interesting Legacy Science themes and to ensure that the SPHEREx data products are responsive to their needs. In February of 2016, some 50 scientists from all fields met in Pasadena to develop these themes and to understand their implications for the SPHEREx mission. The 2016 workshop highlighted many synergies between SPHEREx and other contemporaneous astronomical missions, facilities, and databases. Consequently, in January 2018 we convened a second workshop at the Center for Astrophysics in Cambridge to focus specifically on these synergies. This white paper reports on the results of the 2018 SPHEREx workshop.
Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The mission enabling impact of laboratory astrophysics ranges from the scientific conception stage for airborne and space-based observatories, all the way through to the scientific return of these missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA. These efforts are necessary for the success of astronomical research being funded by NASA. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics (WGLA), have prepared this White Paper on the laboratory astrophysics infrastructure needed to maximize the scientific return from NASAs space and Earth sciences program.
This white paper describes the science case for Very Long Baseline Interferometry (VLBI) and provides suggestions towards upgrade paths for the European VLBI Network (EVN). The EVN is a distributed long-baseline radio interferometric array, that operates at the very forefront of astronomical research. Recent results, together with the new science possibilities outlined in this vision document, demonstrate the EVNs potential to generate new and exciting results that will transform our view of the cosmos. Together with e-MERLIN, the EVN provides a range of baseline lengths that permit unique studies of faint radio sources to be made over a wide range of spatial scales. The science cases are reviewed in six chapters that cover the following broad areas: cosmology, galaxy formation and evolution, innermost regions of active galactic nuclei, explosive phenomena and transients, stars and stellar masers in the Milky Way, celestial reference frames and space applications. The document concludes with identifying the synergies with other radio, as well as multi-band/multi-messenger instruments, and provide the recommendations for future improvements. The appendices briefly describe other radio VLBI arrays, the technological framework for EVN developments, and a selection of spectral lines of astrophysical interest below 100 GHz. The document includes a glossary for non-specialists, and a list of acronyms at the end.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا