Do you want to publish a course? Click here

Roles and Needs of Laboratory Astrophysics in NASAs Space and Earth Science Mission

193   0   0.0 ( 0 )
 Added by Daniel Wolf Savin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The mission enabling impact of laboratory astrophysics ranges from the scientific conception stage for airborne and space-based observatories, all the way through to the scientific return of these missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA. These efforts are necessary for the success of astronomical research being funded by NASA. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics (WGLA), have prepared this White Paper on the laboratory astrophysics infrastructure needed to maximize the scientific return from NASAs space and Earth sciences program.



rate research

Read More

Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.
e-ASTROGAM (enhanced ASTROGAM) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
96 - L. Amati , P.T. OBrien , D. Gotz 2021
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as becoming a cornerstone of multi-messenger and time-domain astrophysics. By investigating the first billion years of the Universe through high-redshift GRBs, THESEUS will shed light on the main open issues in modern cosmology, such as the population of primordial low mass and luminosity galaxies, sources and evolution of cosmic re-ionization, SFR and metallicity evolution up to the cosmic dawn and across Pop-III stars. At the same time, the mission will provide a substantial advancement of multi-messenger and time-domain astrophysics by enabling the identification, accurate localisation and study of electromagnetic counterparts to sources of gravitational waves and neutrinos, which will be routinely detected in the late 20s and early 30s by the second and third generation Gravitational Wave (GW) interferometers and future neutrino detectors, as well as of all kinds of GRBs and most classes of other X/gamma-ray transient sources. In all these cases, THESEUS will provide great synergies with future large observing facilities in the multi-messenger domain. A Guest Observer programme, comprising Target of Opportunity (ToO) observations, will expand the science return of the mission, to include, e.g., solar system minor bodies, exoplanets, and AGN.
154 - Kirpal Nandra 2013
This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.
As the Cosmology and Fundamental Physics (CFP) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the early universe, the microwave background, the reionization and galaxy formation up to virialization of protogalaxies, large scale structure, the intergalactic medium, the determination of cosmological parameters, dark matter, dark energy, tests of gravity, astronomically determined physical constants, and high energy physics using astronomical messengers. Central to the progress in these areas are the corresponding advances in laboratory astrophysics which are required for fully realizing the CFP scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics which produce the observed astrophysical processes. The 5 areas of laboratory astrophysics which we have identified as relevant to the CFP panel are atomic, molecular, plasma, nuclear, and particle physics. Here, Section 2 describes some of the new scientific opportunities and compelling scientific themes which will be enabled by advances in laboratory astrophysics. In Section 3, we provide the scientific context for these opportunities. Section 4 briefly discusses some of the experimental and theoretical advances in laboratory astrophysics required to realize the CFP scientific opportunities of the next decade. As requested in the Call for White Papers, Section 5 presents four central questions and one area with unusual discovery potential. Lastly, we give a short postlude in Section 6.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا